Weighted local polynomial estimations of a non-parametric function with censoring indicators missing at random and their applications

Jiangfeng WANG, Yangcheng ZHOU, Ju TANG

PDF(452 KB)
PDF(452 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (1) : 117-139. DOI: 10.1007/s11464-022-1005-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Weighted local polynomial estimations of a non-parametric function with censoring indicators missing at random and their applications

Author information +
History +

Abstract

In this paper, we consider the weighted local polynomial calibration estimation and imputation estimation of a non-parametric function when the data are right censored and the censoring indicators are missing at random, and establish the asymptotic normality of these estimators. As their applications, we derive the weighted local linear calibration estimators and imputation estimations of the conditional distribution function, the conditional density function and the conditional quantile function, and investigate the asymptotic normality of these estimators. Finally, the simulation studies are conducted to illustrate the finite sample performance of the estimators.

Keywords

Local polynomial estimation / asymptotic normality / non-parametric function / censoring indicator / missing at random

Cite this article

Download citation ▾
Jiangfeng WANG, Yangcheng ZHOU, Ju TANG. Weighted local polynomial estimations of a non-parametric function with censoring indicators missing at random and their applications. Front. Math. China, 2022, 17(1): 117‒139 https://doi.org/10.1007/s11464-022-1005-2

References

[1]
Brunel E, Comte F, Guilloux A. Nonparametric estimation for survival data with censoring indicators missing at random. J Statist Plann Inference, 2013, 143 (10): 1653- 1671
CrossRef Google scholar
[2]
Dikta G. On semiparametric random censorship models. J Statist Plann Inference, 1998, 66 (2): 253- 279
CrossRef Google scholar
[3]
El Ghouch A, Van Keilegom I. Non-parametric regression with dependent censored data. Scand J Statist, 2008, 35 (2): 228- 247
CrossRef Google scholar
[4]
Fan J Q. Local linear regression smoothers and their minimax efficiencies. Ann Statist, 1993, 21 (1): 196- 216
[5]
Fan J Q, Gijbels I. Censored regression: local linear approximations and their applications. J Amer Statist Assoc, 1994, 89 (426): 560- 570
CrossRef Google scholar
[6]
Fan J Q, Yao Q W, Tong H. Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems. Biometrika, 1996, 83 (1): 189- 206
CrossRef Google scholar
[7]
Guessoum Z, Ould-Saïd E. On nonparametric estimation of the regression function under random censorship model. Statist Decisions, 2008, 26 (3): 159- 177
[8]
Guessoum Z, Ould-Saïd E. Central limit theorem for the kernel estimator of the regression function for censored time series. J Nonparametr Stat, 2012, 24 (2): 379- 397
CrossRef Google scholar
[9]
Li X Y, Wang Q H. The weighted least square based estimators with censoring indicators missing at random. J Statist Plann Inference, 2012, 142 (11): 2913- 2925
CrossRef Google scholar
[10]
Liang H Y, de Uña-Álvarez J. Asymptotic properties of conditional quantile estimator for censored dependent observations. Ann Inst Statist Math, 2011, 63 (2): 267- 289
CrossRef Google scholar
[11]
Little R J A, Rubin D B. Statistical Analysis with Missing Data, Second Edition, Wiley Series in Probability and Statistics, Hoboken, NJ: Wiley-Interscience, 2002
[12]
McKeague I W, Subramanian S. Product-limit estimators and Cox regression with missing censoring information. Scand J Statist, 1998, 25 (4): 589- 601
CrossRef Google scholar
[13]
Nadaraya E A. On estimating regression. Theory Probab Appl, 1964, 9 (1): 141- 142
CrossRef Google scholar
[14]
Ould-Saïd E. A strong uniform convergence rate of kernel conditional quantile estimator under random censorship. Statist Probab Lett, 2006, 76 (6): 579- 586
CrossRef Google scholar
[15]
Shen Y, Liang H Y. Quantile regression for partially linear varying-coefficient model with censoring indicators missing at random. Comput Statist Data Anal, 2018, 117: 1- 18
CrossRef Google scholar
[16]
Silverman B W. Some aspects of the spline smoothing approach to nonparametric regression curve fitting, with discussion. J Roy Statist Soc Ser B, 1985, 47 (1): 1- 52
[17]
Tang L J, Zhou Z G, Wu C C. Weighted composite quantile estimation and variable selection method for censored regression model. Statist Probab Lett, 2012, 82 (3): 653- 663
CrossRef Google scholar
[18]
Wang J L, Zheng M. Nonparametric regression estimation with missing censoring indicators. Chinese J Appl Probab Statist, 2014, 30 (5): 476- 490
[19]
Wang Q H, Ng K W. Asymptotically efficient product-limit estimators with censoring indicators missing at random. Statist Sinica, 2008, 18 (2): 749- 768
[20]
Yao M, Wang J F, Lin L. Double-kernel local linear estimator of conditional quantile under left-truncated and dependent data. Acta Math Sin (Chin Ser), 2018, 61 (6): 963- 980
[21]
Yu K M, Jones M C. Local linear quantile regression. J Amer Statist Assoc, 1998, 93 (441): 228- 237
CrossRef Google scholar
[22]
Zhou L Z. A simple censored median regression estimator. Statist Sinica, 2016, 16 (3): 1043- 1058
[23]
Zhou X, Sun L Q. Additive hazards regression with missing censoring information. Statist Sinica, 2003, 13 (4): 1237- 1257

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(452 KB)

Accesses

Citations

Detail

Sections
Recommended

/