PDF
(260KB)
Abstract
Suppose that H is a subgroup of a finite group G. We call H is semipermutable in G if HK = KH for any subgroup K of G such that (|H|, |K|) = 1; H is s-semipermutable in G if HGp = GpH, for any Sylow p-subgroup Gp of G such that (|H|, p) = 1. These two concepts have been received the attention of many scholars in group theory since they were introduced by Professor Zhongmu Chen in 1987. In recent decades, there are a lot of papers published via the application of these concepts. Here we summarize the results in this area and gives some thoughts in the research process.
Keywords
Semipermutable subgroup
/
s-semipermutable subgroup
/
maximal subgroup
/
minimal subgroup
/
the generalized Fitting-subgroup
/
formation
Cite this article
Download citation ▾
Yangming LI.
Semipermutable subgroups and s-semipermutable subgroups in finite groups.
Front. Math. China, 2022, 17(1): 23-46 DOI:10.1007/s11464-022-1002-5
| [1] |
Al-sharo D M , Sulaiman H . On some relations of subnormal subgroups and semipermutability of a finite group. In: Proceedings of the 21st National Symposium on Mathematical Sciences (SKSM21), AIP Conf. Proc., Vol. 1605, Melville, NY: AIP Publishing, 2014, 628- 632
|
| [2] |
Al-sharo K A , Beidleman J C , Heineken H , Ragland M F . Some characterizations of finite groups in which semipermutability is a transitive relation. Forum Math., 2010, 22 (5): 855- 862
|
| [3] |
Asaad M . On maximal subgroups of Sylow subgroups of finite groups. Comm. Algebra, 1998, 26 (11): 3647- 3652
|
| [4] |
Asaad M . Finite groups with given nearly s-embedded subgroups. Acta Math. Hungar., 2014, 144 (2): 499- 514
|
| [5] |
Asaad M , Csörgö P . The influence of minimal subgroups on the structure of finite groups. Arch. Math., 1999, 72: 401- 404
|
| [6] |
Asaad M , Ramadan M , Shaalan A . The influence of π-quasinormality of maximal subgroups of Sylow subgroups of Fitting subgroups of a finite group. Arch. Math., 1991, 56: 521- 527
|
| [7] |
Ballester-Bolinches A , Beidleman J C , Esteban-Romero R , Ragland M F . On a class of supersoluble groups. Bull. Aust. Math. Soc., 2014, 90 (2): 220- 226
|
| [8] |
Ballester-Bolinches A , Esteban-Romero R , Asaad M . Products of Finite Groups. New York: Walter de Gruyter, 2010
|
| [9] |
Ballester-Bolinches A , Esteban-Romero R , Qiao S . A note on a result of Guo and Isaacs about p-supersolubility of finite group. Arch. Math., 2016, 106: 501- 506
|
| [10] |
Ballester-Bolinches A , Ezquerro L M , Skiba A N . Local embeddings of some families of subgroups of finite groups. Acta Math. Sin. (Engl. Ser.), 2009, 25: 869- 882
|
| [11] |
Ballester-Bolinches A , Li Y M , Su N , Xie Z . On π-S-permutable subgroups of finite groups. Mediterr. J. Math., 2016, 13 (1): 93- 99
|
| [12] |
Ballester-Bolinches A , Wang Y , Guo X Y . c-supplemented subgroups of finite groups. Glasgow Math. J., 2000, 42: 383- 389
|
| [13] |
Beidleman J C , Ragland M F . Subnormal, permutable and embedded subgroups in finite groups. Cent. Eur. J. Math., 2011, 9 (4): 915- 921
|
| [14] |
Berkovich Y , Isaacs I M . p-supersolvability and actions on p-groups stabilizing certain subgroups. J. Algebra, 2014, 414: 82- 94
|
| [15] |
Buckley J . Finite groups whose minimal subgroups are normal. Math. Z., 1970, 116: 15- 17
|
| [16] |
Chen X , Guo W B . On weakly S-embedded and weakly τ-embedded subgroups. Sib. Math. J., 2013, 54 (5): 931- 945
|
| [17] |
Chen Z M . Generalization of the Schur-Zassenhaus theorem. J. Math., 1998, 18 (3): 290- 294
|
| [18] |
Chen Z M . Inner and Outer Σ-groups and Minimal Non Σ-groups, Chongqing: Southwest Normal University Press, 1988 (in Chinese)
|
| [19] |
Chen Z M . On a theorem of Srinivasan. Southwest Normal Univ. Nat. Sci., 1987, 12 (1): 1- 4 (in Chinese)
|
| [20] |
Dedekind R . Über Gruppen, deren sámtliche Teiler Normalteiler sind, Math. Ann., 1897, 48: 548- 561
|
| [21] |
Deskin W E . On quasinormal subgroups of finite groups. Math. Z., 1963, 82: 125- 132
|
| [22] |
Doerk K , Hawkes T . Finite Soluble Groups, De Gruyter Expositions in Mathematics, Vol. 4. Berlin: Walter de Gruyter, 1992
|
| [23] |
Gorenstein D . Finite Groups. New York: Chelsea, 1968
|
| [24] |
Guo W B . On F-supplemented subgroups of finite groups. Manuscripta Math., 2008, 127: 139- 150
|
| [25] |
Guo X Y , Zhao X H . π-quasinormality of the maximal subgroups of a Sylow subgroup in a local subgroup. Acta Math. Sci. (Chin. Ser.), 2008, 28 (6): 1222- 1226 (in Chinese)
|
| [26] |
Guo Y H , Isaacs I M . Conditions on p-subgroups implying p-nilpotence or p-supersolvability. Arch. Math., 2015, 105: 215- 222
|
| [27] |
Hall P . On a theorem of Frobenius. Proc. London Math. Soc., 1936, 40: 468- 501
|
| [28] |
Heliel A A , Alharbia S M . The infuence of certain permutable subgroups on the structure of finite groups. Internat. J. Algebra, 2010, 4: 1209- 1218
|
| [29] |
Huang Y J , Li Y M . A local version of a result of Chen. J. Math., 2013, 33 (4): 584- 590
|
| [30] |
Huppert B . Endliche Gruppen I. Grund. Math Wiss Vol 134, Berlin-Heidelberg-New York: Springer-Verlag, 1967 (in German)
|
| [31] |
Huppert B , Blackburn N . Finite Groups III. Berlin: Springer-Verlag, 1982
|
| [32] |
Isaacs I M . Semipermutable π-subgroups. Arch. Math., 2014, 102 (1): 1- 6
|
| [33] |
Kegel O H . Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math Z, 1962, 78: 205- 221 (in German)
|
| [34] |
Kurzwell H , Stellmacher B . The Theory of Finite Groups: An Introduction. New York: Springer, 2003
|
| [35] |
Li B J . On Π-property and Π-normality of subgroups of finite groups. J. Algebra, 2011, 334 (1): 321- 337
|
| [36] |
Li S , He X . On normally embedded subgroups of prime power order in finite groups. Comm. Algebra, 2008, 36: 2333- 2340
|
| [37] |
Li Y M , He X L , Wang Y M . On s-semipermutable subgroups of finite groups. Acta Math. Sin. (Engl. Ser.), 2010, 26 (11): 2215- 2222
|
| [38] |
Li Y M , Li B J . On minimal weakly s-supplemented subgroups of finite groups. J. Algebra Appl., 2011, 10: 811- 820
|
| [39] |
Li Y M , Miao L Y . p-hypercyclically embedding and Π-property of subgroups of finite groups. Comm. Algebra, 2017, 45 (8): 3468- 3474
|
| [40] |
Li Y M , Qiao S H . On weakly s-normal subgroups of finite groups. Ukrainian Math. J., 2012, 63 (11): 1770- 1780
|
| [41] |
Li Y M , Qiao S H , Su N , Wang Y M . On weakly s-semipermutable subgroups of finite groups. J. Algebra, 2012, 371: 250- 261
|
| [42] |
Li Y M , Qiao S H , Wang Y M . A note on a result of Skiba. Sib. Math. J., 2009, 50 (3): 467- 473
|
| [43] |
Li Y M , Wang Y M . The influence of minimal subgroups on the structure of finite group. Proc. Amer. Math. Soc., 2003, 131 (2): 337- 349
|
| [44] |
Li Y M , Wang Y M , Wei H Q . The influence of π-quasinormality of maximal subgroups of Sylow subgroups of a finite group. Arch. Math. (Basel), 2003, 81 (3): 245- 252
|
| [45] |
Lu J K , Li S R . On s-semipermutable subgroups of finite groups. J. Math. Res. Exposition, 2009, 29 (6): 985- 991
|
| [46] |
Lukyanenko V O , Skiba A N . On weakly τ-quasinormal subgroups of finite groups. Acta Math. Hungar., 2009, 125 (3): 237- 248
|
| [47] |
Lukyanenko V O , Skiba A N . Finite groups in which τ-quasinormality is a transitive relation. Rend. Semin. Mat. Univ. Padova, 2010, 124: 231- 246
|
| [48] |
Maier R , Schmid P . The embedding of quasinormal subgroups in finite groups. Math. Z., 1973, 131 (3): 269- 272
|
| [49] |
Mao Y M , Mahboob A , Guo W B . S-semiembedded subgroups of finite groups. Front. Math. China, 2015, 10 (6): 1401- 1413
|
| [50] |
Mazurov V D , Khukhro E I (eds.), Unsolved Problems in Group Theory, 15th Ed.. The Kourovka Notebook, Novosibirsk: Inst. Math. of Russian Acad. Sci. Sib. Div., 2002
|
| [51] |
Miao L Y , Ballester-Bolinches A , Esteban-Romero R , Li Y M . On the supersoluble hypercentre of a finite group. Monatsh. Math., 2017, 184: 641- 648
|
| [52] |
Miao L Y , Li Y M . Some criteria for p-supersolvability of a finite group. Comm. Math. Stat., 2017, 5 (3): 339- 348
|
| [53] |
Obaid M . Finite groups whose certain subgroups of prime power order are S-semipermutable. ISRN Algebra, 2011: 339- 348
|
| [54] |
Ore O . Structures of group theory I. Duke Math. J., 1937, 3: 149- 174
|
| [55] |
Qiu Z , Qiao S . s-semipermutability of subgroups of p-nilpotent residual and p-supersolubility of a finite group. J. Algebra Appl., 2021, 20: 2150117
|
| [56] |
Ramadan M . Influence of normality on maximal subgroups of Sylow subgroups of a finite group. Acta Math. Hungar., 1992, 59 (1/2): 107- 110
|
| [57] |
Ren Y C . Notes on π-quasi-normal subgroups in finite groups. Proc. Amer. Math. Soc., 1993, 117: 631- 636
|
| [58] |
Schmid P . Subgroups permutable with all Sylow subgroups. J. Algebra, 1998, 207: 285- 293
|
| [59] |
Sergienko V I . A criterion for the p-solubility of finite groups. Mat. Zametki, 1971, 9: 375- 383
|
| [60] |
Shemetkov L , Skiba A . On the χφ-hypercenter of finite groups. J. Algebra, 2009, 322: 2106- 2117
|
| [61] |
Shen Z C , Zhang J S , Wu S L . Finite groups with weakly s-semipermutably embedded subgroups. Intern. Elect. J. Algebra, 2012, 11: 111- 124
|
| [62] |
Skiba A N . On weakly s-permutable subgroups of finite groups. J. Algebra, 2007, 315: 192- 209
|
| [63] |
Srinivasan S . Two sufficient conditions for supersolvability of finite groups. Israel J. Math., 1980, 35 (3): 210- 214
|
| [64] |
Stonehewer S E . Permutable subgroups of infinite groups. Math. Z., 1972, 125: 1- 16
|
| [65] |
Su N , Li Y M , Wang Y M . A criterion of p-hypercyclically embedded subgroups of finite groups. J. Algebra, 2014, 400: 82- 93
|
| [66] |
Thompson J G . An example of core-free quasinormal subgroups of p-groups. Math. Z., 1967, 96: 226- 226
|
| [67] |
Wang L F . The influence of s-semipermutable subgroups on the p-supersolvability of finite groups. J. Math. Stud., 2009, 42 (4): 434- 440 (in Chinese)
|
| [68] |
Wang L F , Li Y M , Wang Y M . Finite groups in which (S-)semipermutability is a transitive relation. Intern. J. Algebra, 2008, 2 (3): 143- 152
|
| [69] |
Wang L F , Wang Y M . On s-semipermutable maximal and minimal subgroups of Sylow p-subgroups of finite groups. Comm. Algebra, 2006, 34 (1): 143- 149
|
| [70] |
Wang L F , Zhang Q H . Influence of s-semipermutability of some subgroups of prime power order on structure of finite groups. J. Math. Res. Exposition., 2005, 25 (3): 423- 428
|
| [71] |
Wang Y M . C-normality of groups and its properties. J. Algebra, 1996, 180: 954- 965
|
| [72] |
Wei H Q , Wang Y M , Li Y M . On c-supplemented maximal and minimal subgroups of Sylow subgroups of finite groups. Proc. Amer. Math. Soc., 2004, 132 (8): 2197- 2204
|
| [73] |
Wei H Q , Dai Q , Zhang H , Lv Y , Yang L . On c#-normal subgroups in finite groups, Front. Math. China, 2018, 13 (5): 1169- 1178
|
| [74] |
Wei H Q , Yang L , Dong S . Local c*-supplementation of some subgroups in finite groups, Comm. Algebra, 2016, 44 (11): 4986- 4994
|
| [75] |
Wu X , Li X . Weakly s-semipermutable subgroups and structure of finite groups. Comm. Algebra, 2020, 48 (6): 2307- 2314
|
| [76] |
Xu X Y , Li Y M . A criterion on the finite p-nilpotent groups. J. Math. Res. Appl., 2019, 39 (3): 254- 258
|
| [77] |
Xu Y , Li X H . Weakly s-semipermutable subgroups of finite groups. Front. Math. China, 2011, 6 (1): 161- 175
|
| [78] |
Yu H R . A note on S-semipermutable subgroups of finite groups. Rend. Semin. Mat. Univ. Padova, 2017, 138: 257- 263
|
| [79] |
Zhang Q H . s-semipermutability and abnormality in finite groups. Comm. Algebra, 1999, 27 (9): 4515- 4524
|
| [80] |
Zhang Q H , Wang L F . Finite non-abelian simple groups which contain a non-trivial semipermutable subgroup. Algebra Colloq., 2005, 12 (2): 301- 307
|
| [81] |
Zhang Q H , Wang L F . The influence of s-semipermutable subgroups on the structure of finite groups. Acta Math. Sinica (Chin. Ser.), 2005, 48 (1): 81- 88 (in Chinese)
|
| [82] |
Zhang Q H , Wang L F , Guo P F . The structure of some finite groups. Southeast Asian Bull. Math., 2006, 30: 995- 1002
|
| [83] |
Zhao T , Lu G F . The influence of partially s-embedded subgroups on the structure of a finite group. Acta Univ. Apulensis, 2014, 38: 197- 209
|
RIGHTS & PERMISSIONS
Higher Education Press