Some unsolvable conjectures in finite p-groups
Qinhai ZHANG
Some unsolvable conjectures in finite p-groups
We survey some unsolvable conjectures in finite p-groups and their research progress.
Finite p-groups / Hua-Tuan’s conjecture / Higman’s conjecture / Oliver’s conjecture / Wiegold’s conjecture
[1] |
Abdollahi A . Finite p-groups of class 2 have noninner automorphisms of order p. J Algebra, 2007, 312 (2): 876- 879
CrossRef
Google scholar
|
[2] |
Abdollahi A . Powerful p-groups have non-inner automorphisms of order p and some cohomology. J Algebra, 2010, 323 (3): 779- 789
CrossRef
Google scholar
|
[3] |
Abdollahi A , Ghoraishi M , Wilkens B . Finite p-groups of class 3 have noninner automorphisms of order p. Beitr Algebra Geom, 2013, 54 (1): 363- 381
CrossRef
Google scholar
|
[4] |
Alperin J L . On a special class of regular p-groups. Trans Amer Math Soc, 1963, 106: 77- 99
|
[5] |
Alperin J L . Large Abelian subgroups of p-groups. Trans Amer Math Soc, 1965, 117: 10- 20
|
[6] |
Aschbacher M . Finite Group Theory. Cambridge Studies in Advanced Mathematics, Vol. 10, Cambridge: Cambridge University Press, 1986
|
[7] |
Benmoussa M T , Guerboussa, Y . Some properties of semi-abelian p-groups. Bull Aust Math Soc, 2015, 91 (1): 86- 91
CrossRef
Google scholar
|
[8] |
Berkovich Y . A certain nonregular p-group. Sibirsk Mat Ž, 1971, 12: 907- 911 (in Russian)
|
[9] |
Berkovich Y . On the number of subgroups of given order in a finite p-group of exponent p. Proc Amer Math Soc, 1990, 109 (4): 875- 879
|
[10] |
Berkovich Y . Groups of Prime Power Order, Vol. 1. De Gruyter Expositions in Mathematics, Vol. 46, Berlin: Walter de Gruyter, 2008
|
[11] |
Berkovich Y , Janko Z . Groups of Prime Power Order, Vol. 2. De Gruyter Expositions in Mathematics, Vol. 47, Berlin: Walter de Gruyter, 2008
|
[12] |
Berkovich Y , Janko Z . Groups of Prime Power Order, Vol. 3. De Gruyter Expositions in Mathematics, Vol. 56, Berlin: Walter de Gruyter, 2011
|
[13] |
Berkovich Y , Janko Z . Groups of Prime Power Order, Vol. 4. De Gruyter Expositions in Mathematics, Vol. 61, Berlin: Walter de Gruyter, 2016
|
[14] |
Berkovich Y , Janko Z . Groups of Prime Power Order, Vol. 5. De Gruyter Expositions in Mathematics, Vol. 62, Berlin: Walter de Gruyter, 2016
|
[15] |
Berkovich Y , Janko, Z ., Groups of Prime Power Order, Vol. 6. De Gruyter Expositions in Mathematics, Vol. 65, Berlin: Walter de Gruyter, 2018
|
[16] |
Bodnarchuk L Yu , Pilyavs’ka O S . On the existence of a noninner automorphism of order p for p-groups. Ukrainian Math J, 2001, 53 (11): 1771- 1783
CrossRef
Google scholar
|
[17] |
Bray J N , Wilson R A . On the orders of automorphism groups of finite groups, II. J Group Theory, 2006, 9 (4): 537- 545
|
[18] |
Cartwright M . Bounded conjugacy conditions. Irish Math Soc Newslett, 1984, (12): 14- 21
|
[19] |
Cartwright M . Class and breadth of a finite p-group. Bull Lond Math Soc, 1987, 19 (5): 425- 430
CrossRef
Google scholar
|
[20] |
Cutolo G , Smith H , Wiegold J . The nilpotency class of p-groups in which subgroups have few conjugates. J Algebra, 2006, 300 (1): 160- 170
CrossRef
Google scholar
|
[21] |
Deaconescu M , Silberberg G . Noninner automorphisms of order p of finite p-groups. J Algebra, 2002, 250 (1): 283- 287
CrossRef
Google scholar
|
[22] |
Du Sautoy M P F , Vaughan-Lee M . Non-PORC behaviour of a class of descendant p-groups. J Algebra, 2012, 361: 287- 312
CrossRef
Google scholar
|
[23] |
Dyubyuk P E . On the number of subgroups of an Abelian p-group. Izvestiya Akad Nauk SSSR Ser Mat, 1948, 12: 351- 378
|
[24] |
Dyubyuk P E . On the number of subgroups of certain categories of finite p-groups. Mat Sbornik N.S., 1952, 30 (72): 575- 580 (in Russian)
|
[25] |
Eick B , Newman M F , O’Brien E A . The class-breadth conjecture revisited. J Algebra, 2006, 300 (1): 384- 393
CrossRef
Google scholar
|
[26] |
Evseev A . Higman’s PORC conjecture for a family of groups. Bull Lond Math Soc, 2008, 40 (3): 415- 431
CrossRef
Google scholar
|
[27] |
Faudree R . A note on the automorphism group of a p-group. Proc Amer Math Soc, 1968, 19: 1379- 1382
|
[28] |
Felsch V . The computation of a counterexample to the class-breadth conjecture for p-groups. In: The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., Vol. 37, Providence, RI: AMS, 1980, 503- 506
|
[29] |
Felsch W , Neubüser J , Plesken W . Space groups and groups of prime-power order, IV, Counterexamples to the class-breadth conjecture. J London Math Soc (2), 1981, 24 (1): 113- 122
|
[30] |
Fouladi S , Orfi R . Noninner automorphisms of order p in finite p-groups of coclass 2, when p > 2. Bull Aust Math Soc, 2014, 90 (2): 232- 236
CrossRef
Google scholar
|
[31] |
Gallian J A . On the breadth of a finite p-group. Math Z, 1972, 126: 224- 226
CrossRef
Google scholar
|
[32] |
Gaschütz W . Nichtabelsche p-gruppen besitzen äussere p-automorphismen. J Algebra, 1966, 1- 2 (in German)
|
[33] |
Gavioli N , Mann A , Monti V , Previtali A , Scoppola C M . Groups of prime power order with many conjugacy classes. J Algebra, 1998, 202 (1): 129- 141
CrossRef
Google scholar
|
[34] |
Glauberman G . Large abelian subgroups of finite p-groups. J Algebra, 1997, 196: 301- 338
CrossRef
Google scholar
|
[35] |
Glauberman G . Abelian subgroups of small index in finite p-groups. J Group Theory, 2005, 8 (5): 539- 560
|
[36] |
Glauberman G . Existence of normal subgroups in finite p-groups. J Algebra, 2008, 319 (2): 800- 805
CrossRef
Google scholar
|
[37] |
Glauberman G . A partial analogue of Borel’s fixed point theorem for finite p-groups. J Algebra, 2016, 450: 398- 457
CrossRef
Google scholar
|
[38] |
Glauberman G , Mazza N . p-groups with maximal elementary abelian subgroups of rank 2. J Algebra, 2010, 323 (6): 1729- 1737
CrossRef
Google scholar
|
[39] |
González-Sánchez J , Jaikin-Zapirain A . Finite p-groups with small automorphism group. Forum Math Sigma, 2015, 3: e7, 11 pp.
|
[40] |
Green D , Héthelyi L , Lilienthal M . On Oliver’s p-group conjecture. Algebra Number Theory, 2008, 8 (2): 969- 977
|
[41] |
Green D , Héthelyi L , Mazza N . On Oliver’s p-group Conjecture, II. Math Ann, 2010, 347 (1): 111- 122
CrossRef
Google scholar
|
[42] |
Green D , Héthelyi L , Mazza N . On a strong form of Oliver’s p-group conjecture. J Algebra, 2011, 342: 1- 15
CrossRef
Google scholar
|
[43] |
Green D , Lynd J . Weak closure and Oliver’s p-group conjecture. Israel J Math, 2013, 197 (1): 497- 507
CrossRef
Google scholar
|
[44] |
Higman G . Enumerating p-groups, I, Inequalities. Proc London Math Soc 1960, 10: 24- 30
|
[45] |
Higman G . Enumerating p-groups, II, Problems whose solution is PORC. Proc London Math Soc (3), 1960, 10: 566- 582
|
[46] |
Hua, L.-K. , Some “Anzahl” theorems for groups of prime power orders. Sci Rep Nat Tsing Hua Univ., 1947, 4: 313- 327
|
[47] |
Hughes D R . Partial difference sets. Amer J Math., 1956, 78: 650- 674
CrossRef
Google scholar
|
[48] |
Hughes D R . A problem in group theory, Research Problems, No. 3. Bull Amer Math Soc, 1957, 63: 209
CrossRef
Google scholar
|
[49] |
Jamali A R , Viseh M . On the existence of noninner automorphisms of order two in finite 2-groups. Bull Aust Math Soc, 2013, 87 (2): 278- 287
CrossRef
Google scholar
|
[50] |
Janko Z . Finite nonabelian 2-groups all of whose minimal nonabelian subgroups are metacyclic and have exponent 4. J Algebra, 2009, 321 (10): 2890- 2897
CrossRef
Google scholar
|
[51] |
Janko Z . Finite p-groups with many minimal nonabelian subgroups. J Algebra, 2012, 357: 263- 270
CrossRef
Google scholar
|
[52] |
Janko Z . Finite p-groups of exponent pe all of whose cyclic subgroups of order pe are normal. J Algebra, 2014, 416: 274- 286
CrossRef
Google scholar
|
[53] |
Janko Z . Finite p-groups with some isolated subgroups. J Algebra, 2016, 465: 41- 61
CrossRef
Google scholar
|
[54] |
Khukhro E I . On a question of G. Glauberman about a replacement theorem for finite p-groups J Algebra, 2001, 241 (1): 247- 258
CrossRef
Google scholar
|
[55] |
Knoche H -G . Über den Frobenius’schen Klassenbegriff in nilpotenten Gruppen. Math Z, 1951, 55: 71- 83 (in German)
CrossRef
Google scholar
|
[56] |
Knoche H.-G . Über den Frobeniusschen Klassenbegriff in nilpotenten Gruppen, II. Math Z, 1953, 59: 8- 16 (in German)
CrossRef
Google scholar
|
[57] |
Kulakoff A . Über die Anzahl der eigentlichen untergruppen und der elemente von gegebener ordnung in p-gruppen. Math Ann, 1931, 104 (1): 778- 793 (in German)
CrossRef
Google scholar
|
[58] |
Lee S . A class of descendant p-groups of order p9 and Higman’s PORC conjecture. J Algebra, 2016, 468: 440- 447
CrossRef
Google scholar
|
[59] |
Leedham-Green C R , McKay S . The Structure of Groups of Prime Power Order. London Mathematical Society Monographs, New Series, Book 27, Oxford: Oxford University Press, 2002
|
[60] |
Leedham-Green C R , Newman M F . Space groups and groups of prime-power order, I. Arch Math (Basel), 1980, 35 (3): 193- 202
|
[61] |
Leedham-Green C R , Neumann P M , Wiegold J . The breadth and the class of a finite p-group. J London Math Soc (2), 1969, 1: 409- 420
|
[62] |
Liao S T , Liu W J . A introduction to the theory of homotopy, Beijing: Peking University Press, 1980
|
[63] |
Liebeck H . Outer automorphisms in nilpotent p-groups of class 2. J London Math Soc, 1965, 40: 268- 275
|
[64] |
Longobardi P , Maj M . On p-groups of breadth two. Algebra Colloq, 1999, 6 (2): 121- 124
|
[65] |
Longobardi P , Maj M , Mann A . Minimal classes and maximal class in p-groups. Israel J Math, 1999, 110: 93- 102
CrossRef
Google scholar
|
[66] |
Lynd J . 2-subnormal quadratic offenders and Oliver’s p-group conjecture. Proc Edinb Math Soc (2), 2013, 56 (1): 211- 222
CrossRef
Google scholar
|
[67] |
Macdonald I D . The breadth of finite p-groups, I. Proc Roy Soc Edinburgh Sect A, 1977/78, 78 (1/2): 31- 39
|
[68] |
Macdonald I D . Groups of breadth four have class five. Glasgow Math J, 1978, 19 (2): 141- 148
CrossRef
Google scholar
|
[69] |
Macdonald I D . Some p-groups of Frobenius and extra-special type. Israel J Math, 1981, 40 (3/4): 350- 364
|
[70] |
Mann A . Some questions about p-groups. J. Austral Math Soc Ser A, 1999, 67 (3): 356- 379
CrossRef
Google scholar
|
[71] |
Mann A . Elements of minimal breadth in finite p-groups and Lie algebras. J Aust Math Soc, 2006, 81 (2): 209- 214
CrossRef
Google scholar
|
[72] |
Mann A . The derived length of p-groups. J Algebra, 2000, 224 (2): 263- 267
CrossRef
Google scholar
|
[73] |
Mann A . Spreads and nilpotence class in nilpotent groups and Lie algebras. J. Algebra, 2015, 421: 12- 15
CrossRef
Google scholar
|
[74] |
Martino J , Priddy S . Unstable homotopy classification of BG∧ p. Math Proc Cambridge Philos Soc, 1996, 119 (1): 119- 137
CrossRef
Google scholar
|
[75] |
Mazurov V D , Khukhro E I (eds.). Unsolved Problems in Group Theory, The Kourovka Notebook, No. 16. Novosibirsk: Russian Academy of Sciences Siberian Division, Institute of Mathematics, 2006
|
[76] |
Meierfrankenfeld U , Stellmacher B , Stroth, G . Finite groups of local characteristic p: an overview. In: Groups, Combinatorics & Geometry (Durham, 2001), River Edge, NJ: World Sci. Publ., 2003, 155- 192
|
[77] |
Neumann M F . On coclass and trivial Schur multiplicator. J Algebra, 2009, 322 (3): 910- 913
CrossRef
Google scholar
|
[78] |
O’Brien E A . The p-group generation algorithm. J Symbolic Comput, 1990, 9 (5/6): 677- 698
|
[79] |
Oliver B . Equivalences of classifying spaces completed at odd primes. Math Proc Cambridge Philos Soc, 2004, 137 (2): 321- 347
CrossRef
Google scholar
|
[80] |
Oliver B . Equivalences of Classifying Spaces Completed at the Prime Two. . Mem Amer Math Soc, No. 848, Providence, RI: AMS, 2006
|
[81] |
Parmeggiani G , Stellmacher B . p-groups of small breadth. J Algebra, 1999, 213 (1): 52- 68
CrossRef
Google scholar
|
[82] |
Qu H P , Sun Y , Zhang Q H . Finite p-groups in which the number of subgroups of possible order is less than or equal to p3. Chin Ann Math Ser B, 2010, 31 (4): 497- 506
CrossRef
Google scholar
|
[83] |
Ruscitti M , Legarreta L , Yadav M K . Non-inner automorphisms of order p in finite p-groups of coclass 3. Monatsh Math., 2017, 183 (4): 679- 697
CrossRef
Google scholar
|
[84] |
Schenkman E . The existence of outer automorphisms of some nilpotent groups of class 2. Proc Amer Math Soc, 1955, 6: 6- 11
CrossRef
Google scholar
|
[85] |
Schmid P . Normal p-subgroups in the group of outer automorphisms of a finite p-group. Math Z, 1976, 147 (3): 271- 277
CrossRef
Google scholar
|
[86] |
Schmid P . A cohomological property of regular p-groups. Math Z, 1980, 175 (1): 1- 3
CrossRef
Google scholar
|
[87] |
Shabani-Attar M . On a conjecture about automorphisms of finite p-groups. Arch Math (Basel), 2009, 93 (5): 399- 403
CrossRef
Google scholar
|
[88] |
Shalev A . The structure of finite p-groups: effective proof of coclass conjectures. Invent Math, 1994, 115 (2): 315- 345
|
[89] |
The GAP Group, GAP—Groups, Algorithms, Programming—A System for Computational Discrete Algebra, Version 4.4.10, 2007
|
[90] |
Tong W T . A introduction to homological algebra, Beijing: Higher Education Press, 1998
|
[91] |
Tuan H F . An Anzahl theorem of Kulakoff’s type for p-groups. Sci Rep Nat Tsing Hua Univ Ser A, 1948, 5: 182- 189
|
[92] |
Vaughan-Lee M R . Breadth and commutator subgroups of p-groups. J Algebra, 1974, 32: 278- 285
CrossRef
Google scholar
|
[93] |
Vaughan-Lee M R . Groups of order p8 and exponent p. Int J Group Theory, 2015, 4 (4): 25- 42
|
[94] |
Vaughan-Lee M R . Non-PORC behaviour in groups of order p7. J Algebra, 2018, 500: 30- 45
CrossRef
Google scholar
|
[95] |
Wiegold J . Groups with boundedly finite classes of conjugate elements. Proc Roy Soc London Ser A, 1957, 238: 389- 401
CrossRef
Google scholar
|
[96] |
Wilkens B . 2-groups of breadth 3. J Algebra, 2007, 318 (1): 202- 224
CrossRef
Google scholar
|
[97] |
Xu M Y . The power structure of finite p-groups. Bull Austral Math Soc, 1987, 36 (1): 1- 10
CrossRef
Google scholar
|
[98] |
Xu M Y . Some problems on finite p-groups. Adv Math (China), 1985, 14 (3): 205- 226 (in Chinese)
|
[99] |
Xu M Y , Qu H P . Finite p-groups. Beijing: Beijing University Press, 2010
|
[100] |
Xu X Z . A note on Oliver’s p-group conjecture. J Algebra, 2018, 507: 421- 427
CrossRef
Google scholar
|
[101] |
Zhang J P . Finite groups and fusion systems. Sci Sin Math, 2016, 46 (6): 769- 780 (in Chinese)
|
[102] |
Zhang Q H , An L J . The structure of finite p-groups, Vol. 1. Beijing: Science Press, 2017
|
[103] |
Zhang Q H , An L J . The structure of finite p-groups, Vol. 2. Beijing: Science Press, 2017
|
[104] |
Zhang Q H , Qu H P . On Hua-Tuan’s conjecture. Sci China Math, 2009, 52 (2): 389- 393
CrossRef
Google scholar
|
[105] |
Zhang Q H , Qu H P . On Hua-Tuan’s conjecture II. Sci China Math, 2011, 54 (1): 65- 74
CrossRef
Google scholar
|
/
〈 | 〉 |