Some unsolvable conjectures in finite p-groups

Qinhai ZHANG

PDF(239 KB)
PDF(239 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (1) : 1-22. DOI: 10.1007/s11464-022-1001-6
SURVEY ARTICLE
SURVEY ARTICLE

Some unsolvable conjectures in finite p-groups

Author information +
History +

Abstract

We survey some unsolvable conjectures in finite p-groups and their research progress.

Keywords

Finite p-groups / Hua-Tuan’s conjecture / Higman’s conjecture / Oliver’s conjecture / Wiegold’s conjecture

Cite this article

Download citation ▾
Qinhai ZHANG. Some unsolvable conjectures in finite p-groups. Front. Math. China, 2022, 17(1): 1‒22 https://doi.org/10.1007/s11464-022-1001-6

References

[1]
Abdollahi A . Finite p-groups of class 2 have noninner automorphisms of order p. J Algebra, 2007, 312 (2): 876- 879
CrossRef Google scholar
[2]
Abdollahi A . Powerful p-groups have non-inner automorphisms of order p and some cohomology. J Algebra, 2010, 323 (3): 779- 789
CrossRef Google scholar
[3]
Abdollahi A , Ghoraishi M , Wilkens B . Finite p-groups of class 3 have noninner automorphisms of order p. Beitr Algebra Geom, 2013, 54 (1): 363- 381
CrossRef Google scholar
[4]
Alperin J L . On a special class of regular p-groups. Trans Amer Math Soc, 1963, 106: 77- 99
[5]
Alperin J L . Large Abelian subgroups of p-groups. Trans Amer Math Soc, 1965, 117: 10- 20
[6]
Aschbacher M . Finite Group Theory. Cambridge Studies in Advanced Mathematics, Vol. 10, Cambridge: Cambridge University Press, 1986
[7]
Benmoussa M T , Guerboussa, Y . Some properties of semi-abelian p-groups. Bull Aust Math Soc, 2015, 91 (1): 86- 91
CrossRef Google scholar
[8]
Berkovich Y . A certain nonregular p-group. Sibirsk Mat Ž, 1971, 12: 907- 911 (in Russian)
[9]
Berkovich Y . On the number of subgroups of given order in a finite p-group of exponent p. Proc Amer Math Soc, 1990, 109 (4): 875- 879
[10]
Berkovich Y . Groups of Prime Power Order, Vol. 1. De Gruyter Expositions in Mathematics, Vol. 46, Berlin: Walter de Gruyter, 2008
[11]
Berkovich Y , Janko Z . Groups of Prime Power Order, Vol. 2. De Gruyter Expositions in Mathematics, Vol. 47, Berlin: Walter de Gruyter, 2008
[12]
Berkovich Y , Janko Z . Groups of Prime Power Order, Vol. 3. De Gruyter Expositions in Mathematics, Vol. 56, Berlin: Walter de Gruyter, 2011
[13]
Berkovich Y , Janko Z . Groups of Prime Power Order, Vol. 4. De Gruyter Expositions in Mathematics, Vol. 61, Berlin: Walter de Gruyter, 2016
[14]
Berkovich Y , Janko Z . Groups of Prime Power Order, Vol. 5. De Gruyter Expositions in Mathematics, Vol. 62, Berlin: Walter de Gruyter, 2016
[15]
Berkovich Y , Janko, Z ., Groups of Prime Power Order, Vol. 6. De Gruyter Expositions in Mathematics, Vol. 65, Berlin: Walter de Gruyter, 2018
[16]
Bodnarchuk L Yu , Pilyavs’ka O S . On the existence of a noninner automorphism of order p for p-groups. Ukrainian Math J, 2001, 53 (11): 1771- 1783
CrossRef Google scholar
[17]
Bray J N , Wilson R A . On the orders of automorphism groups of finite groups, II. J Group Theory, 2006, 9 (4): 537- 545
[18]
Cartwright M . Bounded conjugacy conditions. Irish Math Soc Newslett, 1984, (12): 14- 21
[19]
Cartwright M . Class and breadth of a finite p-group. Bull Lond Math Soc, 1987, 19 (5): 425- 430
CrossRef Google scholar
[20]
Cutolo G , Smith H , Wiegold J . The nilpotency class of p-groups in which subgroups have few conjugates. J Algebra, 2006, 300 (1): 160- 170
CrossRef Google scholar
[21]
Deaconescu M , Silberberg G . Noninner automorphisms of order p of finite p-groups. J Algebra, 2002, 250 (1): 283- 287
CrossRef Google scholar
[22]
Du Sautoy M P F , Vaughan-Lee M . Non-PORC behaviour of a class of descendant p-groups. J Algebra, 2012, 361: 287- 312
CrossRef Google scholar
[23]
Dyubyuk P E . On the number of subgroups of an Abelian p-group. Izvestiya Akad Nauk SSSR Ser Mat, 1948, 12: 351- 378
[24]
Dyubyuk P E . On the number of subgroups of certain categories of finite p-groups. Mat Sbornik N.S., 1952, 30 (72): 575- 580 (in Russian)
[25]
Eick B , Newman M F , O’Brien E A . The class-breadth conjecture revisited. J Algebra, 2006, 300 (1): 384- 393
CrossRef Google scholar
[26]
Evseev A . Higman’s PORC conjecture for a family of groups. Bull Lond Math Soc, 2008, 40 (3): 415- 431
CrossRef Google scholar
[27]
Faudree R . A note on the automorphism group of a p-group. Proc Amer Math Soc, 1968, 19: 1379- 1382
[28]
Felsch V . The computation of a counterexample to the class-breadth conjecture for p-groups. In: The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., Vol. 37, Providence, RI: AMS, 1980, 503- 506
[29]
Felsch W , Neubüser J , Plesken W . Space groups and groups of prime-power order, IV, Counterexamples to the class-breadth conjecture. J London Math Soc (2), 1981, 24 (1): 113- 122
[30]
Fouladi S , Orfi R . Noninner automorphisms of order p in finite p-groups of coclass 2, when p > 2. Bull Aust Math Soc, 2014, 90 (2): 232- 236
CrossRef Google scholar
[31]
Gallian J A . On the breadth of a finite p-group. Math Z, 1972, 126: 224- 226
CrossRef Google scholar
[32]
Gaschütz W . Nichtabelsche p-gruppen besitzen äussere p-automorphismen. J Algebra, 1966, 1- 2 (in German)
[33]
Gavioli N , Mann A , Monti V , Previtali A , Scoppola C M . Groups of prime power order with many conjugacy classes. J Algebra, 1998, 202 (1): 129- 141
CrossRef Google scholar
[34]
Glauberman G . Large abelian subgroups of finite p-groups. J Algebra, 1997, 196: 301- 338
CrossRef Google scholar
[35]
Glauberman G . Abelian subgroups of small index in finite p-groups. J Group Theory, 2005, 8 (5): 539- 560
[36]
Glauberman G . Existence of normal subgroups in finite p-groups. J Algebra, 2008, 319 (2): 800- 805
CrossRef Google scholar
[37]
Glauberman G . A partial analogue of Borel’s fixed point theorem for finite p-groups. J Algebra, 2016, 450: 398- 457
CrossRef Google scholar
[38]
Glauberman G , Mazza N . p-groups with maximal elementary abelian subgroups of rank 2. J Algebra, 2010, 323 (6): 1729- 1737
CrossRef Google scholar
[39]
González-Sánchez J , Jaikin-Zapirain A . Finite p-groups with small automorphism group. Forum Math Sigma, 2015, 3: e7, 11 pp.
[40]
Green D , Héthelyi L , Lilienthal M . On Oliver’s p-group conjecture. Algebra Number Theory, 2008, 8 (2): 969- 977
[41]
Green D , Héthelyi L , Mazza N . On Oliver’s p-group Conjecture, II. Math Ann, 2010, 347 (1): 111- 122
CrossRef Google scholar
[42]
Green D , Héthelyi L , Mazza N . On a strong form of Oliver’s p-group conjecture. J Algebra, 2011, 342: 1- 15
CrossRef Google scholar
[43]
Green D , Lynd J . Weak closure and Oliver’s p-group conjecture. Israel J Math, 2013, 197 (1): 497- 507
CrossRef Google scholar
[44]
Higman G . Enumerating p-groups, I, Inequalities. Proc London Math Soc 1960, 10: 24- 30
[45]
Higman G . Enumerating p-groups, II, Problems whose solution is PORC. Proc London Math Soc (3), 1960, 10: 566- 582
[46]
Hua, L.-K. , Some “Anzahl” theorems for groups of prime power orders. Sci Rep Nat Tsing Hua Univ., 1947, 4: 313- 327
[47]
Hughes D R . Partial difference sets. Amer J Math., 1956, 78: 650- 674
CrossRef Google scholar
[48]
Hughes D R . A problem in group theory, Research Problems, No. 3. Bull Amer Math Soc, 1957, 63: 209
CrossRef Google scholar
[49]
Jamali A R , Viseh M . On the existence of noninner automorphisms of order two in finite 2-groups. Bull Aust Math Soc, 2013, 87 (2): 278- 287
CrossRef Google scholar
[50]
Janko Z . Finite nonabelian 2-groups all of whose minimal nonabelian subgroups are metacyclic and have exponent 4. J Algebra, 2009, 321 (10): 2890- 2897
CrossRef Google scholar
[51]
Janko Z . Finite p-groups with many minimal nonabelian subgroups. J Algebra, 2012, 357: 263- 270
CrossRef Google scholar
[52]
Janko Z . Finite p-groups of exponent pe all of whose cyclic subgroups of order pe are normal. J Algebra, 2014, 416: 274- 286
CrossRef Google scholar
[53]
Janko Z . Finite p-groups with some isolated subgroups. J Algebra, 2016, 465: 41- 61
CrossRef Google scholar
[54]
Khukhro E I . On a question of G. Glauberman about a replacement theorem for finite p-groups J Algebra, 2001, 241 (1): 247- 258
CrossRef Google scholar
[55]
Knoche H -G . Über den Frobenius’schen Klassenbegriff in nilpotenten Gruppen. Math Z, 1951, 55: 71- 83 (in German)
CrossRef Google scholar
[56]
Knoche H.-G . Über den Frobeniusschen Klassenbegriff in nilpotenten Gruppen, II. Math Z, 1953, 59: 8- 16 (in German)
CrossRef Google scholar
[57]
Kulakoff A . Über die Anzahl der eigentlichen untergruppen und der elemente von gegebener ordnung in p-gruppen. Math Ann, 1931, 104 (1): 778- 793 (in German)
CrossRef Google scholar
[58]
Lee S . A class of descendant p-groups of order p9 and Higman’s PORC conjecture. J Algebra, 2016, 468: 440- 447
CrossRef Google scholar
[59]
Leedham-Green C R , McKay S . The Structure of Groups of Prime Power Order. London Mathematical Society Monographs, New Series, Book 27, Oxford: Oxford University Press, 2002
[60]
Leedham-Green C R , Newman M F . Space groups and groups of prime-power order, I. Arch Math (Basel), 1980, 35 (3): 193- 202
[61]
Leedham-Green C R , Neumann P M , Wiegold J . The breadth and the class of a finite p-group. J London Math Soc (2), 1969, 1: 409- 420
[62]
Liao S T , Liu W J . A introduction to the theory of homotopy, Beijing: Peking University Press, 1980
[63]
Liebeck H . Outer automorphisms in nilpotent p-groups of class 2. J London Math Soc, 1965, 40: 268- 275
[64]
Longobardi P , Maj M . On p-groups of breadth two. Algebra Colloq, 1999, 6 (2): 121- 124
[65]
Longobardi P , Maj M , Mann A . Minimal classes and maximal class in p-groups. Israel J Math, 1999, 110: 93- 102
CrossRef Google scholar
[66]
Lynd J . 2-subnormal quadratic offenders and Oliver’s p-group conjecture. Proc Edinb Math Soc (2), 2013, 56 (1): 211- 222
CrossRef Google scholar
[67]
Macdonald I D . The breadth of finite p-groups, I. Proc Roy Soc Edinburgh Sect A, 1977/78, 78 (1/2): 31- 39
[68]
Macdonald I D . Groups of breadth four have class five. Glasgow Math J, 1978, 19 (2): 141- 148
CrossRef Google scholar
[69]
Macdonald I D . Some p-groups of Frobenius and extra-special type. Israel J Math, 1981, 40 (3/4): 350- 364
[70]
Mann A . Some questions about p-groups. J. Austral Math Soc Ser A, 1999, 67 (3): 356- 379
CrossRef Google scholar
[71]
Mann A . Elements of minimal breadth in finite p-groups and Lie algebras. J Aust Math Soc, 2006, 81 (2): 209- 214
CrossRef Google scholar
[72]
Mann A . The derived length of p-groups. J Algebra, 2000, 224 (2): 263- 267
CrossRef Google scholar
[73]
Mann A . Spreads and nilpotence class in nilpotent groups and Lie algebras. J. Algebra, 2015, 421: 12- 15
CrossRef Google scholar
[74]
Martino J , Priddy S . Unstable homotopy classification of BG p. Math Proc Cambridge Philos Soc, 1996, 119 (1): 119- 137
CrossRef Google scholar
[75]
Mazurov V D , Khukhro E I (eds.). Unsolved Problems in Group Theory, The Kourovka Notebook, No. 16. Novosibirsk: Russian Academy of Sciences Siberian Division, Institute of Mathematics, 2006
[76]
Meierfrankenfeld U , Stellmacher B , Stroth, G . Finite groups of local characteristic p: an overview. In: Groups, Combinatorics & Geometry (Durham, 2001), River Edge, NJ: World Sci. Publ., 2003, 155- 192
[77]
Neumann M F . On coclass and trivial Schur multiplicator. J Algebra, 2009, 322 (3): 910- 913
CrossRef Google scholar
[78]
O’Brien E A . The p-group generation algorithm. J Symbolic Comput, 1990, 9 (5/6): 677- 698
[79]
Oliver B . Equivalences of classifying spaces completed at odd primes. Math Proc Cambridge Philos Soc, 2004, 137 (2): 321- 347
CrossRef Google scholar
[80]
Oliver B . Equivalences of Classifying Spaces Completed at the Prime Two. . Mem Amer Math Soc, No. 848, Providence, RI: AMS, 2006
[81]
Parmeggiani G , Stellmacher B . p-groups of small breadth. J Algebra, 1999, 213 (1): 52- 68
CrossRef Google scholar
[82]
Qu H P , Sun Y , Zhang Q H . Finite p-groups in which the number of subgroups of possible order is less than or equal to p3. Chin Ann Math Ser B, 2010, 31 (4): 497- 506
CrossRef Google scholar
[83]
Ruscitti M , Legarreta L , Yadav M K . Non-inner automorphisms of order p in finite p-groups of coclass 3. Monatsh Math., 2017, 183 (4): 679- 697
CrossRef Google scholar
[84]
Schenkman E . The existence of outer automorphisms of some nilpotent groups of class 2. Proc Amer Math Soc, 1955, 6: 6- 11
CrossRef Google scholar
[85]
Schmid P . Normal p-subgroups in the group of outer automorphisms of a finite p-group. Math Z, 1976, 147 (3): 271- 277
CrossRef Google scholar
[86]
Schmid P . A cohomological property of regular p-groups. Math Z, 1980, 175 (1): 1- 3
CrossRef Google scholar
[87]
Shabani-Attar M . On a conjecture about automorphisms of finite p-groups. Arch Math (Basel), 2009, 93 (5): 399- 403
CrossRef Google scholar
[88]
Shalev A . The structure of finite p-groups: effective proof of coclass conjectures. Invent Math, 1994, 115 (2): 315- 345
[89]
The GAP Group, GAP—Groups, Algorithms, Programming—A System for Computational Discrete Algebra, Version 4.4.10, 2007
[90]
Tong W T . A introduction to homological algebra, Beijing: Higher Education Press, 1998
[91]
Tuan H F . An Anzahl theorem of Kulakoff’s type for p-groups. Sci Rep Nat Tsing Hua Univ Ser A, 1948, 5: 182- 189
[92]
Vaughan-Lee M R . Breadth and commutator subgroups of p-groups. J Algebra, 1974, 32: 278- 285
CrossRef Google scholar
[93]
Vaughan-Lee M R . Groups of order p8 and exponent p. Int J Group Theory, 2015, 4 (4): 25- 42
[94]
Vaughan-Lee M R . Non-PORC behaviour in groups of order p7. J Algebra, 2018, 500: 30- 45
CrossRef Google scholar
[95]
Wiegold J . Groups with boundedly finite classes of conjugate elements. Proc Roy Soc London Ser A, 1957, 238: 389- 401
CrossRef Google scholar
[96]
Wilkens B . 2-groups of breadth 3. J Algebra, 2007, 318 (1): 202- 224
CrossRef Google scholar
[97]
Xu M Y . The power structure of finite p-groups. Bull Austral Math Soc, 1987, 36 (1): 1- 10
CrossRef Google scholar
[98]
Xu M Y . Some problems on finite p-groups. Adv Math (China), 1985, 14 (3): 205- 226 (in Chinese)
[99]
Xu M Y , Qu H P . Finite p-groups. Beijing: Beijing University Press, 2010
[100]
Xu X Z . A note on Oliver’s p-group conjecture. J Algebra, 2018, 507: 421- 427
CrossRef Google scholar
[101]
Zhang J P . Finite groups and fusion systems. Sci Sin Math, 2016, 46 (6): 769- 780 (in Chinese)
[102]
Zhang Q H , An L J . The structure of finite p-groups, Vol. 1. Beijing: Science Press, 2017
[103]
Zhang Q H , An L J . The structure of finite p-groups, Vol. 2. Beijing: Science Press, 2017
[104]
Zhang Q H , Qu H P . On Hua-Tuan’s conjecture. Sci China Math, 2009, 52 (2): 389- 393
CrossRef Google scholar
[105]
Zhang Q H , Qu H P . On Hua-Tuan’s conjecture II. Sci China Math, 2011, 54 (1): 65- 74
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(239 KB)

Accesses

Citations

Detail

Sections
Recommended

/