Distance signless Laplacian spectrum of a graph

Huicai JIA , Wai Chee SHIU

Front. Math. China ›› 2022, Vol. 17 ›› Issue (4) : 653 -672.

PDF (336KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (4) : 653 -672. DOI: 10.1007/s11464-021-0986-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Distance signless Laplacian spectrum of a graph

Author information +
History +
PDF (336KB)

Abstract

Let G be a simple connected graph with n vertices. The transmission Tv of a vertex v is defined to be the sum of the distances from v to all other vertices in G, that is, Tv = ΣuV duv, where duv denotes the distance between u and v. Let T1, ..., Tn be the transmission sequence of G. Let D = (dij)n×n be the distance matrix of G, and T be the transmission diagonal matrix diag(T1, ..., Tn). The matrix Q(G )=T+D is called the distance signless Laplacian of G. In this paper, we provide the distance signless Laplacian spectrum of complete k-partite graph, and give some sharp lower and upper bounds on the distance signless Laplacian spectral radius q(G).

Keywords

Distance signless Laplacian / spectral radius / bound

Cite this article

Download citation ▾
Huicai JIA, Wai Chee SHIU. Distance signless Laplacian spectrum of a graph. Front. Math. China, 2022, 17(4): 653-672 DOI:10.1007/s11464-021-0986-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aouchiche M, Hansen P. Two Laplacians for the distance matrix of a graph. Linear Algebra Appl, 2013, 439: 21- 33

[2]

Chen Y Y, Lin H Q, Shu J L. Sharp upper bounds on the distance spectral radius of a graph. Linear Algebra Appl, 2013, 439: 2659- 2666

[3]

He C X, Liu Y, Zhao Z H. Some new sharp bounds on the distance spectral radius of graph. MATCH Commun Math Comput Chem, 2010, 63: 783- 788

[4]

Indulal G. Sharp bounds on the distance spectral radius and the distance energy of graphs. Linear Algebra Appl, 2009, 430: 106- 113

[5]

Lin H Q, Hong Y, Wang J F, Shu J L. On the distance spectrum of graphs. Linear Algebra Appl, 2013, 439: 1662- 1669

[6]

Lin H Q, Shu J L. Sharp bounds on distance spectral radius of graphs. Linear Multilinear Algebra, 2013, 61 (4): 442- 447

[7]

Lin H Q, Xue J, Shu J L. On the Dα-spectra of graphs. Linear Multilinear Algebra, 2019, 69 (6): 997- 1019

[8]

Minc H. Nonnegative Matrices. New York: John Wiley & Sons Inc, 1988

[9]

Shu J L, Wu Y R. Sharp upper bounds on the spectral radius of graphs. Linear Algebra Appl, 2004, 377: 241- 248

[10]

Yu G L. On the least distance eigenvalue of a graph. Linear Algebra Appl, 2013, 439: 2428- 2433

[11]

Yu G L, Wu Y R, Shu J L. Sharp bounds on the signless Laplacian spectral radii of graphs. Linear Algebra Appl, 2011, 434: 683- 687

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (336KB)

461

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/