Batalin–Vilkovisky algebra structures on Hochschild cohomology of generalized Weyl algebras
Liyu LIU, Wen MA
Batalin–Vilkovisky algebra structures on Hochschild cohomology of generalized Weyl algebras
We devote to the calculation of Batalin–Vilkovisky algebra structures on the Hochschild cohomology of skew Calabi–Yau generalized Weyl algebras. We first establish a Van den Bergh duality at the level of complex. Then based on the results of Solotar et al., we apply Kowalzig and Krähmer's method to the Hochschild homology of generalized Weyl algebras, and translate the homological information into cohomological one by virtue of the Van den Bergh duality, obtaining the desired Batalin–Vilkovisky algebra structures. Finally, we apply our results to quantum weighted projective lines and Podleś quantum spheres, and the Batalin–Vilkovisky algebra structures for them are described completely.
Hochschild cohomology / Batalin–Vilkovisky algebra / Van den Bergh duality / generalized Weyl algebra
[1] |
Bavula V. Generalized Weyl algebras and their representations. Algebra i Analiz, 1992, 4: 75–97
|
[2] |
Bavula V. Global dimension of generalized Weyl algebras. In: Bautista R, Martinez-Villa R, de la Pena J A, eds. Representation Theory of Aalgebras (ICRA VII, Cocoyoc, Mexico, August 22-26, 1994). CMS Conf Proc, Vol 18. 1996, 81–107
|
[3] |
Bavula V. Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized Weyl algebras. Bull Sci Math, 1996, 120: 293–335
|
[4] |
Bavula V, Jordan D A. Isomorphism problems and groups of automorphisms for generalized Weyl algebras. Trans Amer Math Soc, 2001, 353: 769–794
CrossRef
Google scholar
|
[5] |
Becchi C, Rouet A, Stora R. Renormalization of the Abelian Higgs–Kibble model. Comm Math Phys, 1975, 42: 127–162
CrossRef
Google scholar
|
[6] |
Brzeziński T, Fairfax S A. Quantum teardrops. Comm Math Phys, 2012, 316: 151–170
CrossRef
Google scholar
|
[7] |
Chen X J, Yang S, Zhou G D. Batalin–Vilkovisky algebras and the noncommutative Poincaré duality of Koszul Calabi–Yau algebras. J Pure Appl Algebra, 2016, 220: 2500–2532
CrossRef
Google scholar
|
[8] |
Farinati M A, Solotar A, Suárez-Álvarez M. Hochschild homology and cohomology of generalized Weyl algebras. Ann Inst Fourier (Grenoble), 2003, 53: 465–488
CrossRef
Google scholar
|
[9] |
Gerstenhaber M. The cohomology structure of an associative ring. Ann of Math, 1963, 78: 267–288
CrossRef
Google scholar
|
[10] |
Gerstenhaber M, Schack S D. Algebraic cohomology and deformation theory. In: Hazewinkel M, Gerstenhaber M, eds. Deformation Theory of Algebras and Structures and Applications. NATO Adv Sci Inst Ser C Math Phys Sci, Vol 247. Dordrecht: Kluwer Acad Publ, 1988, 11–264
CrossRef
Google scholar
|
[11] |
Getzler E. Batalin–Vilkovisky algebras and two-dimensional topological field theories. Comm Math Phys, 1994, 159: 265–285
CrossRef
Google scholar
|
[12] |
Ginzburg V. Calabi–Yau algebras. arXiv: 0612139
|
[13] |
Huebschmann J. Lie–Rinehart algebras, Gerstenhaber algebras and Batalin–Vilkovisky algebras. Ann Inst Fourier (Grenoble), 1998, 48: 425–440
CrossRef
Google scholar
|
[14] |
Kimura T, Voronov A, Stasheff J. On operad structures of moduli spaces and string theory. Comm Math Phys, 1995, 171: 1–25
CrossRef
Google scholar
|
[15] |
Kowalzig N, Krähmer U. Batalin–Vilkovisky structures on Ext and Tor. J Reine Angew Math, 2014, 697: 159–219
CrossRef
Google scholar
|
[16] |
Lambre T, Zhou G D, Zimmermann A, The Hochschild cohomology ring of a Frobenius algebra with semisimple Nakayama automorphism is a Batalin–Vilkovisky algebra. J Algebra, 2016, 446: 103–131
CrossRef
Google scholar
|
[17] |
Lian B H, Zukerman G J. New perspectives on the BRST-algebraic structure of string theory. Comm Math Phys, 1993, 154: 613–646
CrossRef
Google scholar
|
[18] |
Liu L Y. Homological smoothness and deformations of generalized Weyl algebras. Israel J Math, 2015, 209: 949–992
CrossRef
Google scholar
|
[19] |
Podleś P. Quantum spheres. Lett Math Phys, 1987, 14: 193–202
CrossRef
Google scholar
|
[20] |
Solotar A, Suárez-Álvarez M, Vivas Q. Hochschild homology and cohomology of generalized Weyl algebras: the quantum case. Ann Inst Fourier (Grenoble), 2013, 63: 923–956
CrossRef
Google scholar
|
[21] |
Tradler T. The Batalin–Vilkovisky algebra on Hochschild cohomology induced by infinity inner products. Ann Inst Fourier (Grenoble), 2008, 58: 2351–2379
CrossRef
Google scholar
|
[22] |
Van den Bergh M. A relation between Hochschild homology and cohomology for Gorenstein rings. Proc Amer Math Soc, 1998, 126: 1345–1348. Erratum ibid. Proc Amer Math Soc, 2002, 130: 2809–2810
CrossRef
Google scholar
|
[23] |
Xu P. Gerstenhaber algebras and BV-algebras in Poisson geometry. Comm Math Phys, 1999, 200: 545–560
CrossRef
Google scholar
|
/
〈 | 〉 |