Batalin–Vilkovisky algebra structures on Hochschild cohomology of generalized Weyl algebras

Liyu LIU, Wen MA

PDF(371 KB)
PDF(371 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (5) : 915-941. DOI: 10.1007/s11464-021-0978-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Batalin–Vilkovisky algebra structures on Hochschild cohomology of generalized Weyl algebras

Author information +
History +

Abstract

We devote to the calculation of Batalin–Vilkovisky algebra structures on the Hochschild cohomology of skew Calabi–Yau generalized Weyl algebras. We first establish a Van den Bergh duality at the level of complex. Then based on the results of Solotar et al., we apply Kowalzig and Krähmer's method to the Hochschild homology of generalized Weyl algebras, and translate the homological information into cohomological one by virtue of the Van den Bergh duality, obtaining the desired Batalin–Vilkovisky algebra structures. Finally, we apply our results to quantum weighted projective lines and Podleś quantum spheres, and the Batalin–Vilkovisky algebra structures for them are described completely.

Keywords

Hochschild cohomology / Batalin–Vilkovisky algebra / Van den Bergh duality / generalized Weyl algebra

Cite this article

Download citation ▾
Liyu LIU, Wen MA. Batalin–Vilkovisky algebra structures on Hochschild cohomology of generalized Weyl algebras. Front. Math. China, 2022, 17(5): 915‒941 https://doi.org/10.1007/s11464-021-0978-6

References

[1]
Bavula V. Generalized Weyl algebras and their representations. Algebra i Analiz, 1992, 4: 75–97
[2]
Bavula V. Global dimension of generalized Weyl algebras. In: Bautista R, Martinez-Villa R, de la Pena J A, eds. Representation Theory of Aalgebras (ICRA VII, Cocoyoc, Mexico, August 22-26, 1994). CMS Conf Proc, Vol 18. 1996, 81–107
[3]
Bavula V. Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized Weyl algebras. Bull Sci Math, 1996, 120: 293–335
[4]
Bavula V, Jordan D A. Isomorphism problems and groups of automorphisms for generalized Weyl algebras. Trans Amer Math Soc, 2001, 353: 769–794
CrossRef Google scholar
[5]
Becchi C, Rouet A, Stora R. Renormalization of the Abelian Higgs–Kibble model. Comm Math Phys, 1975, 42: 127–162
CrossRef Google scholar
[6]
Brzeziński T, Fairfax S A. Quantum teardrops. Comm Math Phys, 2012, 316: 151–170
CrossRef Google scholar
[7]
Chen X J, Yang S, Zhou G D. Batalin–Vilkovisky algebras and the noncommutative Poincaré duality of Koszul Calabi–Yau algebras. J Pure Appl Algebra, 2016, 220: 2500–2532
CrossRef Google scholar
[8]
Farinati M A, Solotar A, Suárez-Álvarez M. Hochschild homology and cohomology of generalized Weyl algebras. Ann Inst Fourier (Grenoble), 2003, 53: 465–488
CrossRef Google scholar
[9]
Gerstenhaber M. The cohomology structure of an associative ring. Ann of Math, 1963, 78: 267–288
CrossRef Google scholar
[10]
Gerstenhaber M, Schack S D. Algebraic cohomology and deformation theory. In: Hazewinkel M, Gerstenhaber M, eds. Deformation Theory of Algebras and Structures and Applications. NATO Adv Sci Inst Ser C Math Phys Sci, Vol 247. Dordrecht: Kluwer Acad Publ, 1988, 11–264
CrossRef Google scholar
[11]
Getzler E. Batalin–Vilkovisky algebras and two-dimensional topological field theories. Comm Math Phys, 1994, 159: 265–285
CrossRef Google scholar
[12]
Ginzburg V. Calabi–Yau algebras. arXiv: 0612139
[13]
Huebschmann J. Lie–Rinehart algebras, Gerstenhaber algebras and Batalin–Vilkovisky algebras. Ann Inst Fourier (Grenoble), 1998, 48: 425–440
CrossRef Google scholar
[14]
Kimura T, Voronov A, Stasheff J. On operad structures of moduli spaces and string theory. Comm Math Phys, 1995, 171: 1–25
CrossRef Google scholar
[15]
Kowalzig N, Krähmer U. Batalin–Vilkovisky structures on Ext and Tor. J Reine Angew Math, 2014, 697: 159–219
CrossRef Google scholar
[16]
Lambre T, Zhou G D, Zimmermann A, The Hochschild cohomology ring of a Frobenius algebra with semisimple Nakayama automorphism is a Batalin–Vilkovisky algebra. J Algebra, 2016, 446: 103–131
CrossRef Google scholar
[17]
Lian B H, Zukerman G J. New perspectives on the BRST-algebraic structure of string theory. Comm Math Phys, 1993, 154: 613–646
CrossRef Google scholar
[18]
Liu L Y. Homological smoothness and deformations of generalized Weyl algebras. Israel J Math, 2015, 209: 949–992
CrossRef Google scholar
[19]
Podleś P. Quantum spheres. Lett Math Phys, 1987, 14: 193–202
CrossRef Google scholar
[20]
Solotar A, Suárez-Álvarez M, Vivas Q. Hochschild homology and cohomology of generalized Weyl algebras: the quantum case. Ann Inst Fourier (Grenoble), 2013, 63: 923–956
CrossRef Google scholar
[21]
Tradler T. The Batalin–Vilkovisky algebra on Hochschild cohomology induced by infinity inner products. Ann Inst Fourier (Grenoble), 2008, 58: 2351–2379
CrossRef Google scholar
[22]
Van den Bergh M. A relation between Hochschild homology and cohomology for Gorenstein rings. Proc Amer Math Soc, 1998, 126: 1345–1348. Erratum ibid. Proc Amer Math Soc, 2002, 130: 2809–2810
CrossRef Google scholar
[23]
Xu P. Gerstenhaber algebras and BV-algebras in Poisson geometry. Comm Math Phys, 1999, 200: 545–560
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(371 KB)

Accesses

Citations

Detail

Sections
Recommended

/