Tensor products of coherent configurations

Gang CHEN, Ilia PONOMARENKO

PDF(325 KB)
PDF(325 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (5) : 829-852. DOI: 10.1007/s11464-021-0975-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Tensor products of coherent configurations

Author information +
History +

Abstract

A Cartesian decomposition of a coherent configuration is defined as a special set of its parabolics that form a Cartesian decomposition of the underlying set. It turns out that every tensor decomposition of comes from a certain Cartesian decomposition. It is proved that if the coherent configuration is thick, then there is a unique maximal Cartesian decomposition of ; i.e., there is exactly one internal tensor decomposition of into indecomposable components. In particular, this implies an analog of the Krull–Schmidt theorem for the thick coherent configurations. A polynomial-time algorithm for finding the maximal Cartesian decomposition of a thick coherent configuration is constructed.

Keywords

Coherent configuration / Cartesian decomposition / Krull–Schmidt theorem

Cite this article

Download citation ▾
Gang CHEN, Ilia PONOMARENKO. Tensor products of coherent configurations. Front. Math. China, 2022, 17(5): 829‒852 https://doi.org/10.1007/s11464-021-0975-9

References

[1]
Bailey R A, Cameron P J, Praeger C E, Schneider C. The geometry of diagonal groups. arXiv: 2007.10726
[2]
Chen G, Ponomarenko I. Coherent Configurations. Wuhan: Central China Normal Univ Press, 2019; a draft is available at www.pdmi.ras.ru/~inp/ccNOTES.pdf
[3]
Cormen T H, Leiserson C E, Rivest R L, Stein C. Introduction to Algorithms. 3rd ed. Cambridge: The MIT Press, 2009
[4]
Ferguson P A, Turull A. Algebraic decomposition of commutative association schemes. J Algebra, 1985, 96: 211–229
CrossRef Google scholar
[5]
Friedl K, Ronyai L. Polynomial time solutions of some problems of computational algebra. In: Proc of the Seventeenth ACM STOC. 1985, 153–162
CrossRef Google scholar
[6]
Hammack R, Imrich W, Klavzar S. Handbook of Product Graphs. Boca Raton: CRC Press, 2011
CrossRef Google scholar
[7]
Higman D G. Coherent configurations. I. Rend Semin Mat Univ Padova, 1971, 44: 1–25
[8]
Higman D G. Coherent algebras. Linear Algebra Appl, 1987, 93: 209–239
CrossRef Google scholar
[9]
Kayal N, Nezhmetdinov T. Factoring groups efficiently. Lecture Notes in Comput Sci, 2009, 5555: 585–596
CrossRef Google scholar
[10]
Krause H. Krull–Schmidt categories and projective covers. Expo Math, 2015, 33: 535–549
CrossRef Google scholar
[11]
Praeger C E, Schneider C. Permutation Groups and Cartesian Decompositions. Cambridge: Cambridge Univ Press, 2018
CrossRef Google scholar
[12]
Wilson J B. Existence, algorithms, and asymptotics of direct product decompositions, I. Groups Complex Cryptol, 2012, 4(1): 1–39
CrossRef Google scholar
[13]
Xu B. Direct products of association schemes and tensor products of table algebras. Algebra Colloq, 2013, 20(3): 475–494
CrossRef Google scholar
[14]
Zieschang P-H. Theory of Association Schemes. Berlin: Springer, 2005

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(325 KB)

Accesses

Citations

Detail

Sections
Recommended

/