Tensor products of coherent configurations
Gang CHEN , Ilia PONOMARENKO
Front. Math. China ›› 2022, Vol. 17 ›› Issue (5) : 829 -852.
Tensor products of coherent configurations
A Cartesian decomposition of a coherent configuration is defined as a special set of its parabolics that form a Cartesian decomposition of the underlying set. It turns out that every tensor decomposition of comes from a certain Cartesian decomposition. It is proved that if the coherent configuration is thick, then there is a unique maximal Cartesian decomposition of ; i.e., there is exactly one internal tensor decomposition of into indecomposable components. In particular, this implies an analog of the Krull–Schmidt theorem for the thick coherent configurations. A polynomial-time algorithm for finding the maximal Cartesian decomposition of a thick coherent configuration is constructed.
Coherent configuration / Cartesian decomposition / Krull–Schmidt theorem
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
Higher Education Press
/
| 〈 |
|
〉 |