Quasi-convex subsets in Alexandrov spaces with lower curvature bound

Xiaole SU , Hongwei SUN , Yusheng WANG

Front. Math. China ›› 2022, Vol. 17 ›› Issue (6) : 1063 -1082.

PDF (307KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (6) : 1063 -1082. DOI: 10.1007/s11464-021-0955-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Quasi-convex subsets in Alexandrov spaces with lower curvature bound

Author information +
History +
PDF (307KB)

Abstract

We introduce quasi-convex subsets in Alexandrov spaces with lower curvature bound, which include not only all closed convex subsets without boundary but also all extremal subsets. Moreover, we explore several essential properties of such kind of subsets including a generalized Liberman theorem. It turns out that the quasi-convex subset is a nice and fundamental concept to illustrate the similarities and differences between Riemannian manifolds and Alexandrov spaces with lower curvature bound.

Keywords

Quasi-convex subset / Alexandrov space / extremal subset / quasigeodesic

Cite this article

Download citation ▾
Xiaole SU, Hongwei SUN, Yusheng WANG. Quasi-convex subsets in Alexandrov spaces with lower curvature bound. Front. Math. China, 2022, 17(6): 1063-1082 DOI:10.1007/s11464-021-0955-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexander S, Kapovitch V, Petrunin A. Alexandrov Geometry. 2010, www.math.psu.edu/petrunin/

[2]

Burago Y, Gromov M, Perel0man G. A. D. Aleksandrov spaces with curvature bounded below. Uspekhi Mat Nank, 1992, 47 (2): 3- 51

[3]

Perel0man G. Elements of Morse theory on Aleksandrov spaces. Algebra i Analiz, 1993, 5(1): 232-241 (in Russian); St Petersburg Math J, 1994, 5 (1): 205- 213

[4]

Perel0man G. A. D. Alexandrov’s spaces with curvature bounded below II. Preprint, LOMI, 1991 (35 pp)

[5]

Perel0man G, Petrunin A. Extremal subsets in Aleksandrov spaces and the generalized Liberman theorem. Algebra i Analiz, 1993, 5(1): 242-256 (in Russian); St Petersburg Math J, 1994, 5 (1): 215- 227

[6]

Perel0man G, Petrunin A. Quasigeodesics and gradient curves in Alexandrov spaces. Preprint, Univ of California at Berkeley, 1994, www.math.psu.edu/petrunin

[7]

Petrunin A. Quasigeodesics in multidimensional Alexandrov spaces. Ph D Thesis. Univ of Illinois at Urbana-Champaign, 1995 (92 pp)

[8]

Petrunin A. Applications of quasigeodesics and gradient curves. In: Grove K, Petersen P, eds. Comparison Geometry. Math Sci Res Inst Publ, Vol 30. Cambridge: Cambridge Univ Press, 1997, 203- 219

[9]

Yamaguchi T. Collapsing 4-manifolds under a lower curvature bound. arXiv: 1205.0323 Yamaguchi T. Collapsing 4-manifolds under a lower curvature bound. arXiv: 1205.0323

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (307KB)

426

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/