Hardy factorization in terms of fractional commutators in Lorentz spaces
Nguyen Anh DAO
Hardy factorization in terms of fractional commutators in Lorentz spaces
We provide a constructive proof of (the classical Hardy space) factorization in terms of fractional commutators in Lorentz spaces. As a direct application, we obtain a characterization of functions in BMO space. Furthermore, we also obtain a Lorentz compactness characterization of fractional commutators.
BMO / CMO / Lorentz space / commutator / Hardy space / Riesz potential
[1] |
Arai H, Mizuhara T. Morrey spaces on spaces of homogeneous type and estimates for □b and the Cauchy-Szegö projection. Math Nachr, 1997, 186: 5–20
CrossRef
Google scholar
|
[2] |
Beatrous F, Li S Y. Boundedness and compactness of operators of Hankel type. J Funct Anal, 1993, 111: 350–379
CrossRef
Google scholar
|
[3] |
Bramanti M, Cerutti M C. Commutators of singular integrals on homogeneous spaces. Boll Unione Mat Ital B (7), 1996, 10(4): 843–883
|
[4] |
Brudnyi Y. Compactness criteria for spaces of measurable functions. St Petersburg Math J, 2015, 26: 49–68
CrossRef
Google scholar
|
[5] |
Calderón A P, Zygmund A. Singular integral operators and differential equations. Amer J Math, 1957, 79: 901–921
CrossRef
Google scholar
|
[6] |
Chanillo S. A note on commutators. Indiana Univ Math J, 1982, 31: 7–16
CrossRef
Google scholar
|
[7] |
Chen Y, Ding Y, Wang X. Compactness of commutators of Riesz potential on Morrey spaces. Potential Anal, 2009, 30: 301–313
CrossRef
Google scholar
|
[8] |
Chiarenza F, Frasca M, Longo P. Solvability of the Dirichlet problem for non divergence elliptic equations with VMO coefficients. Trans Amer Math Soc, 1993, 336: 841–853
CrossRef
Google scholar
|
[9] |
Coifman R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann of Math, 1976, 103(3): 611–635
CrossRef
Google scholar
|
[10] |
Dafni G. Local VMO and weak convergence in h1. Canad Math Bull, 2002, 45: 46–59
CrossRef
Google scholar
|
[11] |
Dao N A. Morrey boundedness and compactness characterizations of integral commutators with singular kernel on strictly pseudoconvex domains in ℂn. J Math Anal Appl, 2020, 492: 124483
CrossRef
Google scholar
|
[12] |
Dao N A, Duong X T, Ha L K. Commutators of Cauchy-Fantappiè type integrals on generalized Morrey spaces on domains of complex ellipsoids. J Geom Anal (to appear)
|
[13] |
Dao N A, Krantz S G. Lorentz boundedness and compactness characterization of integral commutators on spaces of homogeneous type. Nonlinear Anal, 2021, 203: 112162
CrossRef
Google scholar
|
[14] |
Di Fazio G, Ragusa M A. Commutators and Morrey spaces. Boll Unione Mat Ital A (7), 1991, 5(3): 323–332
|
[15] |
Hedberg L. On certain convolution inequalities. Proc Amer Math Soc, 1972, 36: 505–510
CrossRef
Google scholar
|
[16] |
Iwaniec T, Sboedone C. Riesz transform and elliptic PDEs with VMO-coefficients. J Anal Math, 1998, 74: 183–212
CrossRef
Google scholar
|
[17] |
Komori Y, Mizuhara T. Factorization of functions in H1(ℝn) and generalized Morrey spaces. Math Nachr, 2006, 279(5-6): 619–624
CrossRef
Google scholar
|
[18] |
Komori Y, Shirai S. Weighted Morrey spaces and a singular integral operator. Math Nachr, 2009, 282(2): 219–231
CrossRef
Google scholar
|
[19] |
Krantz S G, Li S Y. Boundedness and compactness of integral operators on spaces of homogeneous type and applications II. J Math Anal Appl, 2001, 258: 642–657
CrossRef
Google scholar
|
[20] |
O’Neil R. Convolution operators and L(p; q) spaces. Duke Math J, 1963, 30: 129–142
CrossRef
Google scholar
|
[21] |
Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton Math Ser, No 30. Princeton: Princeton Univ Press, 1970
CrossRef
Google scholar
|
[22] |
Tao J, Yang D C, Yang D Y. Boundedness and compactness characterizations of Cauchy integral commutators on Morrey spaces. Math Methods Appl Sci, 2019, 42(5): 1631–1651
CrossRef
Google scholar
|
[23] |
Uchiyama A. On the compactness of operators of Hankel type. Tohoku Math J, 1978, 30: 163–171
CrossRef
Google scholar
|
/
〈 | 〉 |