Manin’s conjecture for a class of singular cubic hypersurfaces

Wenguang ZHAI

PDF(417 KB)
PDF(417 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (6) : 1089-1132. DOI: 10.1007/s11464-021-0945-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Manin’s conjecture for a class of singular cubic hypersurfaces

Author information +
History +

Abstract

Let l > 2 be a fixed positive integer and Q(y) be a positive definite quadratic form in l variables with integral coefficients. The aim of this paper is to count rational points of bounded height on the cubic hypersurface defined by u3 = Q(y)z. We can get a power-saving result for a class of special quadratic forms and improve on some previous work.

Keywords

Manin’s conjecture / quadratic form / asymptotic formula / divisor problem / exponential sum

Cite this article

Download citation ▾
Wenguang ZHAI. Manin’s conjecture for a class of singular cubic hypersurfaces. Front. Math. China, 2022, 17(6): 1089‒1132 https://doi.org/10.1007/s11464-021-0945-2

References

[1]
Batyrev V , Tschinkel Y . Manin’s conjecture for toric varieties. J Algebraic Geom, 1998, 7: 15- 53
[2]
Batyrev V , Tschinkel Y . Tamagawa numbers of polarized algebraic varieties. Astérisque, 1998, 251: 299- 340
[3]
Bhowmik G , Wu J . On the asymptotic behaviour of the number of subgroups of finite abelian groups. Arch Math (Basel), 1997, 69: 95- 104
[4]
de La Bretèche R . Sur le nombre de points de hauteur bornée d’une certaine surface cubique singulière. Astérisque, 1998, 251: 51- 77
[5]
de La Bretèche R , Destagnol K , Liu J , Wu J , Zhao Y . On a certain non-split cubic surface. Sci China Math, 2019, 62 (12): 2435- 2446
[6]
Conrey J B . The fourth moment of derivatives of the Riemann zeta-function. Quart J Math Oxford (2), 1988, 39 (1): 21- 36
[7]
Davenport H . Cubic forms in sixteen variables. Proc R Soc Lond A, 1963, 272: 285- 303
[8]
Deligne P . La Conjecture de Weil. I. Publ Math Inst Hautes Études Sci, 1974, 43: 29- 39
[9]
Fouvry É . Sur la hauteur des points d’une certaine surface cubique singulière. Astérisque, 1998, 251: 31- 49
[10]
Franke J , Manin Y I , Tschinkel Y . Rational points of bounded height on Fano varieties. Invent Math, 1989, 95: 421- 435
[11]
Heath-Brown D R . Cubic forms in 14 variables. Invent Math, 2007, 170: 199- 230
[12]
Heath-Brown D R , Moroz B Z . The density of rational points on the cubic surface X3 = X1X2X3. Math Proc Cambridge Philos Soc, 1999, 125: 385- 395
[13]
Ivić A . The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications. New York: Wiley, 1985
[14]
Iwaniec H . Topics in Classical Automorphic Forms. Grad Stud Math, Vol 17. Providence: Amer Math Soc, 1997
[15]
Liu J , Wu J , Zhao Y . Manin’s conjecture for a class of singular cubic hypersurfaces. Int Math Res Not IMRN, 2019, 2019 (7): 2008- 2043
[16]
Robert O , Sargos P . Three-dimensional exponential sums with monomials. J Reine Angew Math, 2006, 591: 1- 20
[17]
Salberger P . Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Astérisque, 1998, 351: 91- 258
[18]
Tenenbaum G . Introduction to Analytic and Probabilistic Number Theory. 3rd ed. Grad Stud Math, Vol 163. Providence: Amer Math Soc, 2015
[19]
Tóth L , Zhai W . On the error term concerning the number of subgroups of the groups Zm × Zn with m, nx. Acta Arith, 2018, 183: 285- 299

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(417 KB)

Accesses

Citations

Detail

Sections
Recommended

/