Manin’s conjecture for a class of singular cubic hypersurfaces

Wenguang ZHAI

Front. Math. China ›› 2022, Vol. 17 ›› Issue (6) : 1089 -1132.

PDF (417KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (6) : 1089 -1132. DOI: 10.1007/s11464-021-0945-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Manin’s conjecture for a class of singular cubic hypersurfaces

Author information +
History +
PDF (417KB)

Abstract

Let l > 2 be a fixed positive integer and Q(y) be a positive definite quadratic form in l variables with integral coefficients. The aim of this paper is to count rational points of bounded height on the cubic hypersurface defined by u3 = Q(y)z. We can get a power-saving result for a class of special quadratic forms and improve on some previous work.

Keywords

Manin’s conjecture / quadratic form / asymptotic formula / divisor problem / exponential sum

Cite this article

Download citation ▾
Wenguang ZHAI. Manin’s conjecture for a class of singular cubic hypersurfaces. Front. Math. China, 2022, 17(6): 1089-1132 DOI:10.1007/s11464-021-0945-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Batyrev V , Tschinkel Y . Manin’s conjecture for toric varieties. J Algebraic Geom, 1998, 7: 15- 53

[2]

Batyrev V , Tschinkel Y . Tamagawa numbers of polarized algebraic varieties. Astérisque, 1998, 251: 299- 340

[3]

Bhowmik G , Wu J . On the asymptotic behaviour of the number of subgroups of finite abelian groups. Arch Math (Basel), 1997, 69: 95- 104

[4]

de La Bretèche R . Sur le nombre de points de hauteur bornée d’une certaine surface cubique singulière. Astérisque, 1998, 251: 51- 77

[5]

de La Bretèche R , Destagnol K , Liu J , Wu J , Zhao Y . On a certain non-split cubic surface. Sci China Math, 2019, 62 (12): 2435- 2446

[6]

Conrey J B . The fourth moment of derivatives of the Riemann zeta-function. Quart J Math Oxford (2), 1988, 39 (1): 21- 36

[7]

Davenport H . Cubic forms in sixteen variables. Proc R Soc Lond A, 1963, 272: 285- 303

[8]

Deligne P . La Conjecture de Weil. I. Publ Math Inst Hautes Études Sci, 1974, 43: 29- 39

[9]

Fouvry É . Sur la hauteur des points d’une certaine surface cubique singulière. Astérisque, 1998, 251: 31- 49

[10]

Franke J , Manin Y I , Tschinkel Y . Rational points of bounded height on Fano varieties. Invent Math, 1989, 95: 421- 435

[11]

Heath-Brown D R . Cubic forms in 14 variables. Invent Math, 2007, 170: 199- 230

[12]

Heath-Brown D R , Moroz B Z . The density of rational points on the cubic surface X3 = X1X2X3. Math Proc Cambridge Philos Soc, 1999, 125: 385- 395

[13]

Ivić A . The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications. New York: Wiley, 1985

[14]

Iwaniec H . Topics in Classical Automorphic Forms. Grad Stud Math, Vol 17. Providence: Amer Math Soc, 1997

[15]

Liu J , Wu J , Zhao Y . Manin’s conjecture for a class of singular cubic hypersurfaces. Int Math Res Not IMRN, 2019, 2019 (7): 2008- 2043

[16]

Robert O , Sargos P . Three-dimensional exponential sums with monomials. J Reine Angew Math, 2006, 591: 1- 20

[17]

Salberger P . Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Astérisque, 1998, 351: 91- 258

[18]

Tenenbaum G . Introduction to Analytic and Probabilistic Number Theory. 3rd ed. Grad Stud Math, Vol 163. Providence: Amer Math Soc, 2015

[19]

Tóth L , Zhai W . On the error term concerning the number of subgroups of the groups Zm × Zn with m, nx. Acta Arith, 2018, 183: 285- 299

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (417KB)

572

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/