Manin’s conjecture for a class of singular cubic hypersurfaces
Wenguang ZHAI
Manin’s conjecture for a class of singular cubic hypersurfaces
Let l > 2 be a fixed positive integer and Q(y) be a positive definite quadratic form in l variables with integral coefficients. The aim of this paper is to count rational points of bounded height on the cubic hypersurface defined by u3 = Q(y)z. We can get a power-saving result for a class of special quadratic forms and improve on some previous work.
Manin’s conjecture / quadratic form / asymptotic formula / divisor problem / exponential sum
[1] |
Batyrev V , Tschinkel Y . Manin’s conjecture for toric varieties. J Algebraic Geom, 1998, 7: 15- 53
|
[2] |
Batyrev V , Tschinkel Y . Tamagawa numbers of polarized algebraic varieties. Astérisque, 1998, 251: 299- 340
|
[3] |
Bhowmik G , Wu J . On the asymptotic behaviour of the number of subgroups of finite abelian groups. Arch Math (Basel), 1997, 69: 95- 104
|
[4] |
de La Bretèche R . Sur le nombre de points de hauteur bornée d’une certaine surface cubique singulière. Astérisque, 1998, 251: 51- 77
|
[5] |
de La Bretèche R , Destagnol K , Liu J , Wu J , Zhao Y . On a certain non-split cubic surface. Sci China Math, 2019, 62 (12): 2435- 2446
|
[6] |
Conrey J B . The fourth moment of derivatives of the Riemann zeta-function. Quart J Math Oxford (2), 1988, 39 (1): 21- 36
|
[7] |
Davenport H . Cubic forms in sixteen variables. Proc R Soc Lond A, 1963, 272: 285- 303
|
[8] |
Deligne P . La Conjecture de Weil. I. Publ Math Inst Hautes Études Sci, 1974, 43: 29- 39
|
[9] |
Fouvry É . Sur la hauteur des points d’une certaine surface cubique singulière. Astérisque, 1998, 251: 31- 49
|
[10] |
Franke J , Manin Y I , Tschinkel Y . Rational points of bounded height on Fano varieties. Invent Math, 1989, 95: 421- 435
|
[11] |
Heath-Brown D R . Cubic forms in 14 variables. Invent Math, 2007, 170: 199- 230
|
[12] |
Heath-Brown D R , Moroz B Z . The density of rational points on the cubic surface X3 = X1X2X3. Math Proc Cambridge Philos Soc, 1999, 125: 385- 395
|
[13] |
Ivić A . The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications. New York: Wiley, 1985
|
[14] |
Iwaniec H . Topics in Classical Automorphic Forms. Grad Stud Math, Vol 17. Providence: Amer Math Soc, 1997
|
[15] |
Liu J , Wu J , Zhao Y . Manin’s conjecture for a class of singular cubic hypersurfaces. Int Math Res Not IMRN, 2019, 2019 (7): 2008- 2043
|
[16] |
Robert O , Sargos P . Three-dimensional exponential sums with monomials. J Reine Angew Math, 2006, 591: 1- 20
|
[17] |
Salberger P . Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Astérisque, 1998, 351: 91- 258
|
[18] |
Tenenbaum G . Introduction to Analytic and Probabilistic Number Theory. 3rd ed. Grad Stud Math, Vol 163. Providence: Amer Math Soc, 2015
|
[19] |
Tóth L , Zhai W . On the error term concerning the number of subgroups of the groups Zm × Zn with m, n ≤ x. Acta Arith, 2018, 183: 285- 299
|
/
〈 | 〉 |