Transversality on locally pseudocompact groups
Fucai LIN, Zhongbao TANG
Transversality on locally pseudocompact groups
Two non-discrete Hausdorff group topologies and on a group G are called transversal if the least upper bound of and is the discrete topology. In this paper, we discuss the existence of transversal group topologies on locally pseudocompact, locally precompact, or locally compact groups. We prove that each locally pseudocompact, connected topological group satisfies central subgroup paradigm, which gives an affrmative answer to a problem posed by Dikranjan, Tkachenko, and Yaschenko [Topology Appl., 2006, 153:3338-3354]. For a compact normal subgroup K of a locally compact totally disconnected group G, if G admits a transversal group topology, then G/K admits a transversal group topology, which gives a partial answer again to a problem posed by Dikranjan, Tkachenko, and Yaschenko in 2006. Moreover, we characterize some classes of locally compact groups that admit transversal group topologies.
Transversal group topology / locally pseudocompact group / locally compact group / locally precompact / connected space / central topological group
[1] |
Agrawal M R, Kanpur U B. On existence of finite universal Korovkin sets in the centre of group Algebra. Monatsh Math, 1997, 123: 1–20
CrossRef
Google scholar
|
[2] |
Arhangel'skii A, Tkachenko M. Topological Groups and Related Structures. Atlantis Stud Math, Vol 1. Paris/Hackensack: Atlantis Press/World Scientific, NJ, 2008
CrossRef
Google scholar
|
[3] |
Birkhoff G. On the combination of topologies. Fund Math, 1936, 26: 156–166
CrossRef
Google scholar
|
[4] |
Dikranjan D. Recent advances in minimal topological groups. Topology Appl, 1998, 126: 149–168
CrossRef
Google scholar
|
[5] |
Dikranjan D, Tkachenko M, Yaschenko I. On transversal group topologies. Topology Appl, 2005, 153: 786–817
CrossRef
Google scholar
|
[6] |
Dikranjan D, Tkachenko M, Yaschenko I. Transversal group topologies on non-abelian group. Topology Appl, 2006, 153: 3338–3354
CrossRef
Google scholar
|
[7] |
van Douwen E K. The weight of a pseudocompact (homogeneous) space whose cardinality has countable cofinality. Proc Amer Math Soc, 1980, 80(4): 678–682
CrossRef
Google scholar
|
[8] |
Engelking R. General Topology (revised and completed ed). Berlin: Heldermann Verlag, 1989
|
[9] |
Grosser S, Moskowitz M. On central topological groups. Trans Amer Math Soc, 1967, 127: 317–340
CrossRef
Google scholar
|
[10] |
Hofmann K H, Morris S. The Structure of Compact Groups. Berlin: de Gruyter, 2013
CrossRef
Google scholar
|
[11] |
Peyrovian M R. Maximal compact normal subgroups. Proc Amer Math Soc, 1987, 99(2): 389–394
CrossRef
Google scholar
|
[12] |
Prodanov I R, Stoyanov L N. Every minimal abelian group is precompact. Dokl Bulg Acad Sci, 1984, 37: 23–26
|
[13] |
Stephenson R M. Minimal topological groups. Math Ann, 1971, 192: 193–195
CrossRef
Google scholar
|
[14] |
Tkacenko M G, Tkachuk V V, Wilson R G, Yaschenko I. No submaximal topology on a countable set is T1-complementary. Proc Amer Math Soc, 2000, 128(1): 287–297
CrossRef
Google scholar
|
[15] |
Weil A. Sur les Espaces à Structure Uniforme et sur la Topologie Génénrale. Publ Math de l'Université Strasbourg. Paris: Hermann $ Cie, 1937
|
[16] |
Zelenyuk E, Protasov I. Complemented topologies on abelian groups. Sibirsk Mat Zh, 2001, 42(3): 550-560 (in Russian); Sib Math J, 2001, 42(3): 465–472
CrossRef
Google scholar
|
/
〈 | 〉 |