Properties of Ahlfors constant in Ahlfors covering surface theory

Wennan LI, Zonghan SUN, Guangyuan ZHANG

PDF(343 KB)
PDF(343 KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (4) : 957-977. DOI: 10.1007/s11464-021-0939-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Properties of Ahlfors constant in Ahlfors covering surface theory

Author information +
History +

Abstract

This paper is a subsequent work of [Invent. Math., 2013, 191: 197-253]. The second fundamental theorem in Ahlfors covering surface theory is that, for each set Eq of q (≥3) distinct points in the extended complex plane ; there is a minimal positive constant H0 (Eq) (called Ahlfors constant with respect to Eq), such that the inequality

(q2)A()4π(f1(Eq)U)H0(Eq)L()

holds for any simply-connected surface=f,U ; where A() is the area of; L() is the perimeter of; and # denotes the cardinality. It is difficult to compute H0 (Eq) explicitly for general set Eq; and only a few properties of H0(Eq) are known. The goals of this paper are to prove the continuity and differentiability of H0 (Eq); to estimate H0 (Eq); and to discuss the minimum of H0 (Eq) for fiixed q.

Keywords

Nevanlinna Theory / value distribution / Ahlfors theory of covering surfaces

Cite this article

Download citation ▾
Wennan LI, Zonghan SUN, Guangyuan ZHANG. Properties of Ahlfors constant in Ahlfors covering surface theory. Front. Math. China, 2021, 16(4): 957‒977 https://doi.org/10.1007/s11464-021-0939-0

References

[1]
Ahlfors L V. Zur Theorie derÜherlagerung-Sächen. Acta Math, 1935, 65: 157–194
CrossRef Google scholar
[2]
Ahlfors L V. Complex Analysis. 3rd ed. New York: McGraw-Hill, 1979
[3]
Bernstein F. Uber die isoperimetrische eigenschaft des kreises auf der kugeloberache und in der ebene. Math Ann, 1905, 60: 117–136
CrossRef Google scholar
[4]
Drasin D. The impact of Lars Ahlfors' work in value-distribution theory. Ann Acad Sci Fenn Ser A I Math, 1988, 13(3): 329–353
CrossRef Google scholar
[5]
Dufresnoy J. Sur les domaines couverts par les valeurs dune fonction méromorphe ou algébroïde. Ann Sci Éc Norm Supér, 1941, 58: 179–259
CrossRef Google scholar
[6]
Eremenko A. Ahlfors contribution to the theory of meromorphic functions. In: Lectures in Memory of Lars Ahlfors (Haifa, 1996). Israel Math Conf Proc, 14. Ramat Gan: Bar-Ilan Univ, 2000, 41–63
[7]
Hayman W K. Meromorphic Functions. Oxford: Oxford Univ Press, 1964
[8]
Nevanlinna R. Zur theorie der meromorphen funktionen. Acta Math, 1925, 46: 1–99
CrossRef Google scholar
[9]
Stoilow S. Lecons sur les Principes Topologiques de la Theorie des Fonctions Analytiques. Paris: Gauthier-Villars, 1956
[10]
Sun Z H, Zhang G Y. Branch values in Ahlfors' theory of covering surfaces. Sci China Math, 2020, 63: 1535–1558
CrossRef Google scholar
[11]
Yang L. Value Distribution Theory. Berlin: Springer, 1993
[12]
Zhang G Y. The precise bound for the area-length ratio in Ahifors' theory of covering surfaces. Invent Math, 2013, 191: 197–253
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(343 KB)

Accesses

Citations

Detail

Sections
Recommended

/