Properties of Ahlfors constant in Ahlfors covering surface theory
Wennan LI, Zonghan SUN, Guangyuan ZHANG
Properties of Ahlfors constant in Ahlfors covering surface theory
This paper is a subsequent work of [Invent. Math., 2013, 191: 197-253]. The second fundamental theorem in Ahlfors covering surface theory is that, for each set Eq of q (≥3) distinct points in the extended complex plane ; there is a minimal positive constant H0 (Eq) (called Ahlfors constant with respect to Eq), such that the inequality
holds for any simply-connected surface ; where A() is the area of; L() is the perimeter of; and # denotes the cardinality. It is difficult to compute H0 (Eq) explicitly for general set Eq; and only a few properties of H0(Eq) are known. The goals of this paper are to prove the continuity and differentiability of H0 (Eq); to estimate H0 (Eq); and to discuss the minimum of H0 (Eq) for fiixed q.
Nevanlinna Theory / value distribution / Ahlfors theory of covering surfaces
[1] |
Ahlfors L V. Zur Theorie derÜherlagerung-Sächen. Acta Math, 1935, 65: 157–194
CrossRef
Google scholar
|
[2] |
Ahlfors L V. Complex Analysis. 3rd ed. New York: McGraw-Hill, 1979
|
[3] |
Bernstein F. Uber die isoperimetrische eigenschaft des kreises auf der kugeloberache und in der ebene. Math Ann, 1905, 60: 117–136
CrossRef
Google scholar
|
[4] |
Drasin D. The impact of Lars Ahlfors' work in value-distribution theory. Ann Acad Sci Fenn Ser A I Math, 1988, 13(3): 329–353
CrossRef
Google scholar
|
[5] |
Dufresnoy J. Sur les domaines couverts par les valeurs dune fonction méromorphe ou algébroïde. Ann Sci Éc Norm Supér, 1941, 58: 179–259
CrossRef
Google scholar
|
[6] |
Eremenko A. Ahlfors contribution to the theory of meromorphic functions. In: Lectures in Memory of Lars Ahlfors (Haifa, 1996). Israel Math Conf Proc, 14. Ramat Gan: Bar-Ilan Univ, 2000, 41–63
|
[7] |
Hayman W K. Meromorphic Functions. Oxford: Oxford Univ Press, 1964
|
[8] |
Nevanlinna R. Zur theorie der meromorphen funktionen. Acta Math, 1925, 46: 1–99
CrossRef
Google scholar
|
[9] |
Stoilow S. Lecons sur les Principes Topologiques de la Theorie des Fonctions Analytiques. Paris: Gauthier-Villars, 1956
|
[10] |
Sun Z H, Zhang G Y. Branch values in Ahlfors' theory of covering surfaces. Sci China Math, 2020, 63: 1535–1558
CrossRef
Google scholar
|
[11] |
Yang L. Value Distribution Theory. Berlin: Springer, 1993
|
[12] |
Zhang G Y. The precise bound for the area-length ratio in Ahifors' theory of covering surfaces. Invent Math, 2013, 191: 197–253
CrossRef
Google scholar
|
/
〈 | 〉 |