Classification on irreducible Whittaker modules over quantum group Uqsl3,

Limeng XIA, Xiangqian GUO, Jiao ZHANG

PDF(279 KB)
PDF(279 KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (4) : 1089-1097. DOI: 10.1007/s11464-021-0932-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Classification on irreducible Whittaker modules over quantum group Uqsl3,

Author information +
History +

Abstract

We define the Whittaker modules over the simply-connected quantum group Uqsl3, ; where is the weight lattice of Lie algebra sl3: Then we completely classify all those simple ones. Explicitly, a simple Whittaker module over Uqsl3, is either a highest weight module, or determined by two parametersz andγ* (up to a Hopf automorphism).

Keywords

Quantum group / simple / Whittaker module / Whittaker vector

Cite this article

Download citation ▾
Limeng XIA, Xiangqian GUO, Jiao ZHANG. Classification on irreducible Whittaker modules over quantum group Uqsl3,. Front. Math. China, 2021, 16(4): 1089‒1097 https://doi.org/10.1007/s11464-021-0932-7

References

[1]
Adamović D, Lü R C, Zhao K M. Whittaker modules for the affine Lie algebra A1(1).Adv Math, 2016, 289: 438–479
[2]
Arnal D, Pinzcon G. On algebraically irreducible representations of the Lie algebras sl2. J Math Phys, 1974, 15: 350–359
[3]
Benkart G, Ondrus M. Whittaker modules for generalized Weyl algebras. Represent Theory, 2009, 13: 141–164
CrossRef Google scholar
[4]
Christodoulopoulou K. Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J Algebra, 2008, 320: 2871–2890
CrossRef Google scholar
[5]
Guo X Q, Liu X W. Whittaker modules over generalized Virasoro algebras. Comm Algebra, 2011, 39: 3222–3231
CrossRef Google scholar
[6]
Guo X Q, Liu X W. Whittaker modules over Virasoro-like algebra. J Math Phys, 2011, 52(9): 093504 (9 pp)
CrossRef Google scholar
[7]
Hartwig J T, Yu N. Simple Whittaker modules over free bosonic orbifold vertex operator algebras. Proc Amer Math Soc, 2019, 147: 3259–3272
CrossRef Google scholar
[8]
Jantzen J C. Lectures on Quantum Groups. Grad Stud Math, Vol 6. Providence: Amer Math Soc, 1996
[9]
Kostant B. On Whittaker vectors and representation theory. Invent Math, 1978, 48: 101–184
CrossRef Google scholar
[10]
Li L B, Xia L M, Zhang Y H. On the centers of quantum groups of An-type. Sci China Math, 2018, 61: 287–294
CrossRef Google scholar
[11]
Liu D, Pei Y F, Xia L M. Whittaker modules for the super-Virasoro algebras. J Algebra Appl, 2019, 18: 1950211 (13 pp)
CrossRef Google scholar
[12]
Liu X W, Guo X Q. Whittaker modules over loop Virasoro algebra. Front Math China, 2013, 8(2): 393–410
CrossRef Google scholar
[13]
Ondrus M. Whittaker modules for Uq(sl2). J Algebra, 2005, 289: 192–213
[14]
Ondrus M, Wiesner E. Whittaker modules for the Virasoro algebra. J Algebra Appl, 2009, 8: 363-377
CrossRef Google scholar
[15]
Ondrus M, Wiesner E. Whittaker categories for the Virasoro algebra. Comm Algebra, 2013, 41: 3910–3930
CrossRef Google scholar
[16]
Sevostyanov A. Regular nilpotent elements and quantum groups. Comm Math Phys, 1999, 204: 1–16
CrossRef Google scholar
[17]
Sevostyanov A. Quantum deformation of Whittaker modules and the Toda lattice. Duke Math J, 2000, 105: 211–238
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(279 KB)

Accesses

Citations

Detail

Sections
Recommended

/