Classification on irreducible Whittaker modules over quantum group
Limeng XIA, Xiangqian GUO, Jiao ZHANG
Classification on irreducible Whittaker modules over quantum group
We define the Whittaker modules over the simply-connected quantum group ; where is the weight lattice of Lie algebra : Then we completely classify all those simple ones. Explicitly, a simple Whittaker module over is either a highest weight module, or determined by two parameters and (up to a Hopf automorphism).
Quantum group / simple / Whittaker module / Whittaker vector
[1] |
Adamović D, Lü R C, Zhao K M. Whittaker modules for the affine Lie algebra A1(1).Adv Math, 2016, 289: 438–479
|
[2] |
Arnal D, Pinzcon G. On algebraically irreducible representations of the Lie algebras sl2. J Math Phys, 1974, 15: 350–359
|
[3] |
Benkart G, Ondrus M. Whittaker modules for generalized Weyl algebras. Represent Theory, 2009, 13: 141–164
CrossRef
Google scholar
|
[4] |
Christodoulopoulou K. Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J Algebra, 2008, 320: 2871–2890
CrossRef
Google scholar
|
[5] |
Guo X Q, Liu X W. Whittaker modules over generalized Virasoro algebras. Comm Algebra, 2011, 39: 3222–3231
CrossRef
Google scholar
|
[6] |
Guo X Q, Liu X W. Whittaker modules over Virasoro-like algebra. J Math Phys, 2011, 52(9): 093504 (9 pp)
CrossRef
Google scholar
|
[7] |
Hartwig J T, Yu N. Simple Whittaker modules over free bosonic orbifold vertex operator algebras. Proc Amer Math Soc, 2019, 147: 3259–3272
CrossRef
Google scholar
|
[8] |
Jantzen J C. Lectures on Quantum Groups. Grad Stud Math, Vol 6. Providence: Amer Math Soc, 1996
|
[9] |
Kostant B. On Whittaker vectors and representation theory. Invent Math, 1978, 48: 101–184
CrossRef
Google scholar
|
[10] |
Li L B, Xia L M, Zhang Y H. On the centers of quantum groups of An-type. Sci China Math, 2018, 61: 287–294
CrossRef
Google scholar
|
[11] |
Liu D, Pei Y F, Xia L M. Whittaker modules for the super-Virasoro algebras. J Algebra Appl, 2019, 18: 1950211 (13 pp)
CrossRef
Google scholar
|
[12] |
Liu X W, Guo X Q. Whittaker modules over loop Virasoro algebra. Front Math China, 2013, 8(2): 393–410
CrossRef
Google scholar
|
[13] |
Ondrus M. Whittaker modules for Uq(sl2). J Algebra, 2005, 289: 192–213
|
[14] |
Ondrus M, Wiesner E. Whittaker modules for the Virasoro algebra. J Algebra Appl, 2009, 8: 363-377
CrossRef
Google scholar
|
[15] |
Ondrus M, Wiesner E. Whittaker categories for the Virasoro algebra. Comm Algebra, 2013, 41: 3910–3930
CrossRef
Google scholar
|
[16] |
Sevostyanov A. Regular nilpotent elements and quantum groups. Comm Math Phys, 1999, 204: 1–16
CrossRef
Google scholar
|
[17] |
Sevostyanov A. Quantum deformation of Whittaker modules and the Toda lattice. Duke Math J, 2000, 105: 211–238
CrossRef
Google scholar
|
/
〈 | 〉 |