Hypergraph characterizations of copositive tensors

Yue WANG, Jihong SHEN, Changjiang BU

PDF(335 KB)
PDF(335 KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (3) : 815-824. DOI: 10.1007/s11464-021-0931-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Hypergraph characterizations of copositive tensors

Author information +
History +

Abstract

A real symmetric tensor A=(ai1im)[mn] is copositive (resp., strictly copositive) if Axm0 (resp., Axm>0) for any nonzero nonnegative vectorxn: By using the associated hypergraph of A, we give necessary and sufficient conditions for the copositivity of A: For a real symmetric tensor Asatisfying the associated negative hypergraph H_(A) and associated positive hypergraph H+(A) are edge disjoint subhypergraphs of a supertree or cored hypergraph, we derive criteria for the copositivity of A: We also use copositive tensors to study the positivity of tensor systems.

Keywords

Copositive tensor / hypergraph / positive system

Cite this article

Download citation ▾
Yue WANG, Jihong SHEN, Changjiang BU. Hypergraph characterizations of copositive tensors. Front. Math. China, 2021, 16(3): 815‒824 https://doi.org/10.1007/s11464-021-0931-8

References

[1]
Bartosiewicz Z. Positive nonlinear systems, response maps and realizations. In: Proc of 54th IEEE Conference on Decision and Control, December 15-18, 2015, Osaka.2015, 6379–6384
CrossRef Google scholar
[2]
Bretto A. Hypergraph Theory: An Introduction. Berlin: Springer, 2013
CrossRef Google scholar
[3]
Bu C J, Li H F, Zhou J. Inverse Perron values and connectivity of a uniform hyper-graph. Electron J Combin, 2018, 25: P4.28
CrossRef Google scholar
[4]
Bu C J, Wei Y M, Sun L Z, Zhou J. Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl, 2015, 480: 168–175
CrossRef Google scholar
[5]
Chen H B, Huang Z H, Qi L Q. Copositive detection of tensors: theory and algorithm. J Optim Theory Appl, 2017, 174: 746–761
CrossRef Google scholar
[6]
Chen H B, Huang Z H, Qi L Q. Copositive tensor detection and its applications in physics and hypergraphs. Comput Optim Appl, 2018, 69: 133–158
CrossRef Google scholar
[7]
Chen H B, Wang Y J. High-order copositive tensors and its applications. J Appl Anal Comput, 2018, 8(6): 1863–1885
CrossRef Google scholar
[8]
Cooper J, Dutle A. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436: 3268–3292
CrossRef Google scholar
[9]
Ding W Y, Qi L Q, Wei Y M.ℳ-tensors and nonsingular ℳ-tensors. Linear Algebra Appl, 2013, 439: 3264–3278
CrossRef Google scholar
[10]
Farina L, Rinaldi S. Positive Linear Systems: Theory and Applications. New York: Wiley Interscience, 2000
CrossRef Google scholar
[11]
Hiriart-Urruty J B, Seeger A. A variational approach to copositive matrices. SIAM Rev, 2010, 52(4): 593–629
CrossRef Google scholar
[12]
Hu S L, Qi L Q, Shao J Y. Cored hypergraphs, power hypergraphs and their Laplacian H-eigenvalues. Linear Algebra Appl, 2013, 439: 2980–2998
CrossRef Google scholar
[13]
Kannike K. Vacuum stability of a general scalar potential of a few fields. Eur Phys J C, 2016, 76: 324
CrossRef Google scholar
[14]
Li H H, Shao J Y, Qi L Q. The extremal spectral radii of k-uniform supertrees. J Comb Optim, 2016, 32: 741–764
CrossRef Google scholar
[15]
Li L, Zhang X Z, Huang Z H, Qi L Q. Test of copositive tensors. J Ind Manag Optim, 2019, 15(2): 881–891
CrossRef Google scholar
[16]
Lim L H. Singular values and eigenvalues of tensors: a variational approach.In: Proc1st IEEE International Workshop on Computational Advances of Multisensor AdaptiveProcessing, Puerto Vallarta, 2005. 2005, 129–132
[17]
Motzkin T S. Copositive quadratic forms. National Bureau Standards Report, 1952, 1818: 11–12
[18]
Nie J W, Yang Z, Zhang X Z. A complete semidefinite algorithm for detecting copositive matrices and tensors. SIAM J Optim, 2018, 28: 2902–2921
CrossRef Google scholar
[19]
Pena J, Vera J C, Zuluaga L F. Completely positive reformulations for polynomial optimization. Math Program, 2014, 151: 405. Complet431
CrossRef Google scholar
[20]
Qi L Q. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
CrossRef Google scholar
[21]
Qi L Q. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl, 2013, 439: 228–238
CrossRef Google scholar
[22]
Qi L Q, Luo Z Y. Tensor Analysis: Spectral Theory and Special Tensors. Philadelphia: SIAM, 2017
CrossRef Google scholar
[23]
Shaked-Monderer N. SPN graphs: When copositive= SPN. Linear Algebra Appl, 2016, 509: 82–113
CrossRef Google scholar
[24]
Shao J Y, Qi L Q, Hu S L. Some new trace formulas of tensors with applications in spectral hypergraph theory. Linear Multilinear Algebra, 2015, 63: 971–992
CrossRef Google scholar
[25]
Song Y S, Qi L Q. Necessary and sufficient conditions for copositive tensors. Linear Multilinear Algebra, 2015, 63: 120–131
CrossRef Google scholar
[26]
Wang C Y, Chen H B, Wang Y J, Zhou G L. On copositiveness identification of partially symmetric rectangular tensors. J Comput Appl Math, 2020, 372: 112678
CrossRef Google scholar
[27]
Zhang L P, Qi L Q, Zhou G L. M-tensors and some applications. SIAM J Matrix Anal Appl, 2014, 35: 437–452
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(335 KB)

Accesses

Citations

Detail

Sections
Recommended

/