Hypergraph characterizations of copositive tensors

Yue WANG , Jihong SHEN , Changjiang BU

Front. Math. China ›› 2021, Vol. 16 ›› Issue (3) : 815 -824.

PDF (335KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (3) : 815 -824. DOI: 10.1007/s11464-021-0931-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Hypergraph characterizations of copositive tensors

Author information +
History +
PDF (335KB)

Abstract

A real symmetric tensor A=(ai1im)[mn] is copositive (resp., strictly copositive) if Axm0 (resp., Axm>0) for any nonzero nonnegative vectorxn: By using the associated hypergraph of A, we give necessary and sufficient conditions for the copositivity of A: For a real symmetric tensor Asatisfying the associated negative hypergraph H_(A) and associated positive hypergraph H+(A) are edge disjoint subhypergraphs of a supertree or cored hypergraph, we derive criteria for the copositivity of A: We also use copositive tensors to study the positivity of tensor systems.

Keywords

Copositive tensor / hypergraph / positive system

Cite this article

Download citation ▾
Yue WANG, Jihong SHEN, Changjiang BU. Hypergraph characterizations of copositive tensors. Front. Math. China, 2021, 16(3): 815-824 DOI:10.1007/s11464-021-0931-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bartosiewicz Z. Positive nonlinear systems, response maps and realizations. In: Proc of 54th IEEE Conference on Decision and Control, December 15-18, 2015, Osaka.2015, 6379–6384

[2]

Bretto A. Hypergraph Theory: An Introduction. Berlin: Springer, 2013

[3]

Bu C J, Li H F, Zhou J. Inverse Perron values and connectivity of a uniform hyper-graph. Electron J Combin, 2018, 25: P4.28

[4]

Bu C J, Wei Y M, Sun L Z, Zhou J. Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl, 2015, 480: 168–175

[5]

Chen H B, Huang Z H, Qi L Q. Copositive detection of tensors: theory and algorithm. J Optim Theory Appl, 2017, 174: 746–761

[6]

Chen H B, Huang Z H, Qi L Q. Copositive tensor detection and its applications in physics and hypergraphs. Comput Optim Appl, 2018, 69: 133–158

[7]

Chen H B, Wang Y J. High-order copositive tensors and its applications. J Appl Anal Comput, 2018, 8(6): 1863–1885

[8]

Cooper J, Dutle A. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436: 3268–3292

[9]

Ding W Y, Qi L Q, Wei Y M.-tensors and nonsingular -tensors. Linear Algebra Appl, 2013, 439: 3264–3278

[10]

Farina L, Rinaldi S. Positive Linear Systems: Theory and Applications. New York: Wiley Interscience, 2000

[11]

Hiriart-Urruty J B, Seeger A. A variational approach to copositive matrices. SIAM Rev, 2010, 52(4): 593–629

[12]

Hu S L, Qi L Q, Shao J Y. Cored hypergraphs, power hypergraphs and their Laplacian H-eigenvalues. Linear Algebra Appl, 2013, 439: 2980–2998

[13]

Kannike K. Vacuum stability of a general scalar potential of a few fields. Eur Phys J C, 2016, 76: 324

[14]

Li H H, Shao J Y, Qi L Q. The extremal spectral radii of k-uniform supertrees. J Comb Optim, 2016, 32: 741–764

[15]

Li L, Zhang X Z, Huang Z H, Qi L Q. Test of copositive tensors. J Ind Manag Optim, 2019, 15(2): 881–891

[16]

Lim L H. Singular values and eigenvalues of tensors: a variational approach.In: Proc1st IEEE International Workshop on Computational Advances of Multisensor AdaptiveProcessing, Puerto Vallarta, 2005. 2005, 129–132

[17]

Motzkin T S. Copositive quadratic forms. National Bureau Standards Report, 1952, 1818: 11–12

[18]

Nie J W, Yang Z, Zhang X Z. A complete semidefinite algorithm for detecting copositive matrices and tensors. SIAM J Optim, 2018, 28: 2902–2921

[19]

Pena J, Vera J C, Zuluaga L F. Completely positive reformulations for polynomial optimization. Math Program, 2014, 151: 405. Complet431

[20]

Qi L Q. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324

[21]

Qi L Q. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl, 2013, 439: 228–238

[22]

Qi L Q, Luo Z Y. Tensor Analysis: Spectral Theory and Special Tensors. Philadelphia: SIAM, 2017

[23]

Shaked-Monderer N. SPN graphs: When copositive= SPN. Linear Algebra Appl, 2016, 509: 82–113

[24]

Shao J Y, Qi L Q, Hu S L. Some new trace formulas of tensors with applications in spectral hypergraph theory. Linear Multilinear Algebra, 2015, 63: 971–992

[25]

Song Y S, Qi L Q. Necessary and sufficient conditions for copositive tensors. Linear Multilinear Algebra, 2015, 63: 120–131

[26]

Wang C Y, Chen H B, Wang Y J, Zhou G L. On copositiveness identification of partially symmetric rectangular tensors. J Comput Appl Math, 2020, 372: 112678

[27]

Zhang L P, Qi L Q, Zhou G L. M-tensors and some applications. SIAM J Matrix Anal Appl, 2014, 35: 437–452

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (335KB)

562

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/