H1Sn1,Triebel-Lizorkin space" /> H1Sn1" /> H1Sn1,Triebel-Lizorkin space" />

Marcinkiewicz integrals with rough kernels in H1Sn1

Daiqing ZHANG , Feng LIU

Front. Math. China ›› 2021, Vol. 16 ›› Issue (4) : 1163 -1189.

PDF (476KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (4) : 1163 -1189. DOI: 10.1007/s11464-021-0913-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Marcinkiewicz integrals with rough kernels in H1Sn1

Author information +
History +
PDF (476KB)

Abstract

This paper is devoted to studying the Marcinkiewicz integral operators associated to polynomial compound curves. Some new bounds for the above operators on the Lebesgue, Triebel-Lizorkin, and Besov spaces are established by assuming that their rough kernels are given byΩH1Sn1 andhΔ+for someγ>1: It should be pointed out that the bounds are independent of h,Ω,γ and the coefficients of the polynomials in the definition of the operators.

Keywords

Marcinkiewicz integral / polynomial curve / H1Sn1')">H1Sn1 / Triebel-Lizorkin space

Cite this article

Download citation ▾
Daiqing ZHANG, Feng LIU. Marcinkiewicz integrals with rough kernels in H1Sn1. Front. Math. China, 2021, 16(4): 1163-1189 DOI:10.1007/s11464-021-0913-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Salman A. Marcinkiewicz functions along at surfaces with Hardy space kernels. J Integral Equations Appl, 2005, 17: 357–373

[2]

Al-Salman A. Rough maximal functions supported by subvarieties. J Operator Theory, 2008, 59: 263–275

[3]

Al-Salman A. A note on parabolic Marcinkiewicz integrals along surfaces. Proc A Razmadze Math Inst, 2010, 154: 21–36

[4]

Al-Salman A. On the L2 boundedness of parametric Marcinkiewicz integral operator. J Math Anal Appl, 2011, 375: 745–752

[5]

Al-Salman A, Al-Qassume H, Cheng L C, Pan Y B. Lp bounds for the function of Marcinkiewicz. Math Res Lett, 2002, 9: 697–700

[6]

Al-Salman A, Pan Y B. On certain estimates for Marcinkiewicz integrals and extrapolation. Collect Math, 2009, 60: 123–145

[7]

Benedek A, Calderón A, Panzone R. Convolution operators on Banach space valued functions. Proc Natl Acad Sci USA, 1962, 48: 356–365

[8]

Chen J C, Fan D S, Pan Y B. A note on a Marcinkiewicz integral operator. Math Nachr, 2001, 227: 33–42

[9]

Colzani L. Hardy spaces on spheres. Ph D Thesis. St Louis: Washington Univ, 1982

[10]

Colzani L, Taibleson M, Weiss G. Maximal estimates for Cesàro and Riesz means on sphere. Indiana Univ Math J, 1984, 33: 873–889

[11]

Ding Y, Fan D S, Pan Y B. Lp-boundedness of Marcinkiewicz integrals with Hardy space function kernel. Acta Math Sin (Engl Ser), 2000, 16: 593–600

[12]

Ding Y, Fan D S, Pan Y B. On the Lp boundedness of Marcinkiewicz integrals. Michigan Math J, 2002, 50: 17–26

[13]

Ding Y, Lu S Z, Yabuta Y. A problem on rough parametric Marcinkiewicz functions. J Aust Math Soc, 2002, 72: 13–21

[14]

Ding Y, Xue Q Y, Yabuta K. Boundedness of the Marcinkiewicz integrals with rough kernel associated to surfaces. Tohoku Math J, 2010, 62: 233–262

[15]

Ding Y, Xue Q Y, Yabuta K. A remark to the L2 boundedness of parametric Marcinkiewicz integral. J Math Anal Appl, 2012, 387: 691–697

[16]

Fan D S, Pan Y B. A singular integral operator with rough kernel. Proc Amer Math Soc, 1997, 125: 3695–3703

[17]

Frazier M, Jawerth B, Weiss G. Littlewood-Paley Theory and the Study of Function Spaces. CBMS Reg Conf Ser Math, No 79. Providence: Amer Math Soc, 1991

[18]

Grafakos L, Stefanov A. Lp bounds for singular integrals and maximal singular integrals with rough kernels. Indiana Univ Math J, 1998, 47: 455–469

[19]

Hörmander L. Estimates for translation invariant operators in Lp spaces. Acta Math, 1960, 104: 93–104

[20]

Jiang Y S, Lu S Z. Lp boundedness of a class of maximal singular integral operators. Acta Math Sinica (Chin Ser), 1992, 35: 63–72

[21]

Liu F. A note on Marcinkiewicz integrals associated to surfaces of revolution. J Aust Math Soc, 2018, 104: 380–402

[22]

Liu F, Wu H X. On Marcinkiewicz integrals associated to compound mappings with rough kernels. Acta Math Sin (Engl Ser), 2014, 30: 1210–1230

[23]

Liu F, Wu H X.Lp bounds for Marcinkiewicz integrals associated to homogeneous mappings. Monatsh Math, 2016, 181: 875–906

[24]

Liu F, Wu H X. On the regularity of maximal operators supported by submanifolds. J Math Anal Appl, 2017, 453: 144–158

[25]

Liu F, Zhang D Q. Parametric Marcinkiewicz integrals associated to surfaces with rough kernels and extrapolation. Bull Korean Math Soc, 2015, 52: 771–788

[26]

Ricci F, Stein E M. Harmonic analysis on nilpotent groups and singular integrals I: Oscillatory integrals. J Funct Anal, 1987, 73: 179–194

[27]

Sakamoto M, Yabuta K. Boundedness of Marcinkiewicz functions. Studia Math, 1999, 135: 103–142

[28]

Sato S. Estimates for singular integrals and extrapolation. Studia Math, 2009, 192: 219–233

[29]

Stein E M. On the function of Littlewood-Paley, Lusin and Marcinkiewicz. Trans Amer Math Soc, 1958, 88: 430–466

[30]

Taibleson M H, Weiss G. Certain function spaces connected with almost everywhere convergence of Fourier series. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, I, II (Chicago, Ill, 1981). Wadsworth Math Ser. Belmont: Wadsworth, 1983, 95C–113

[31]

Triebel H. Theory of Function Spaces. Monogr Math, Vol 78. Basel: Birkhäser Verlag, 1983

[32]

Wu H X. On Marcinkiewicz integral operators with rough kernels. Integral Equations Operator Theory, 2005, 52: 285–298

[33]

Yabuta K. Triebel-Lizorkin space boundedness of Marcinkiewicz integrals associated to surfaces. Appl Math J Chinese Univ, 2015, 30: 418–446

[34]

Zhang C J, Chen J C. Boundedness of g-functions on Triebel-Lizorkin spaces. Taiwanese J Math, 2009, 13: 973–981

[35]

Zhang C J, Chen J C. Boundedness of Marcinkiewicz integral on Triebel-Lizorkin spaces. Appl Math J Chinese Univ, 2010, 25: 48–54

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (476KB)

649

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/