Commutators of maximal functions on spaces of homogeneous type and their weighted, local versions

Zunwei FU, Elodie POZZI, Qingyan WU

PDF(322 KB)
PDF(322 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (4) : 625-652. DOI: 10.1007/s11464-021-0912-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Commutators of maximal functions on spaces of homogeneous type and their weighted, local versions

Author information +
History +

Abstract

We obtain the characterizations of commutators of several versions of maximal functions on spaces of homogeneous type. In addition, with the aid of interpolation theory, we provide weighted version of the commutator theorems by establishing new characterizations of the weighted BMO space. Finally, a concrete example shows that the local version of commutators also has an independent interest.

Keywords

Maximal function / space of homogeneous type / BMO space / weight / commutator

Cite this article

Download citation ▾
Zunwei FU, Elodie POZZI, Qingyan WU. Commutators of maximal functions on spaces of homogeneous type and their weighted, local versions. Front. Math. China, 2022, 17(4): 625‒652 https://doi.org/10.1007/s11464-021-0912-y

References

[1]
Agcayazi M , Gogatishvili A , Koca K , Mustafayev R . A note on maximal commutators and commutators of maximal functions. J Math Soc Japan, 2015, 67 (2): 581- 593
CrossRef Google scholar
[2]
Aimar H , Bernardis A , Iaffei B . Multiresolution approximations and unconditional bases on weighted Lebesgue spaces on spaces of homogeneous type. J Approx Theory, 2007, 148 (1): 12- 34
CrossRef Google scholar
[3]
Auscher P , Hytönen T . Orthonormal bases of regular wavelets in spaces of homogeneous type. Appl Comput Harmon Anal, 2013, 34 (2): 266- 296
CrossRef Google scholar
[4]
Bastero J , Milman M , Ruiz F J . Commutators for the maximal and sharp functions. Proc Amer Math Soc, 2000, 128: 3329- 3334
CrossRef Google scholar
[5]
Carbery A , Chang S -Y A , Garnett J . Weights and L log L. Pacific J Math, 1985, 120 (1): 33- 45
CrossRef Google scholar
[6]
Chen P , Li J , Ward L A . BMO from dyadic BMO via expectations on product spaces of homogeneous type. J Funct Anal, 2013, 265: 2420- 2451
CrossRef Google scholar
[7]
Chen W , Sawyer E . Endpoint estimates for commutators of singular integrals on spaces of homogeneous type. J Math Anal Appl, 2003, 282 (2): 553- 566
CrossRef Google scholar
[8]
Coifman R R , Rochberg R , Weiss G . Factorization theorems for Hardy spaces in several variables. Ann of Math (2), 1976, 103: 611- 635
CrossRef Google scholar
[9]
Coifman R R , Weiss G . Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes. Lecture Notes in Math, Vol 242. Berlin: Springer-Verlag, 1971
CrossRef Google scholar
[10]
Coifman R R , Weiss G . Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569- 645
CrossRef Google scholar
[11]
David G , Journé J L , Semmes S . Calderón-Zygmund operators, para-accretive functions and interpolation. Rev Mat Iberoam, 1985, 1 (4): 1- 56
[12]
Deng D G , Han Y S . Harmonic Analysis on Spaces of Homogeneous Type. Berlin: Springer, 2009
[13]
Duong X T , Lacey M , Li J , Wick B D , Wu Q Y . Commutators of Cauchy type integrals for domains in C n with minimal smoothness. Indiana Univ Math J (in press)
[14]
Edmunds D E , Kokilashvili V , Meskhi A . Weight inequalities for singular integrals defined on spaces of homogeneous and nonhomogeneous type. Georgian Math J, 2001, 8 (1): 33- 59
CrossRef Google scholar
[15]
García-Cuerva J , Harboure E , Segovia C , Torrea J L . Weighted norm inequalities for commutators of strongly singular integrals. Indiana Univ Math J, 1991, 40: 1397- 1420
CrossRef Google scholar
[16]
García-Cuerva J , Rubio de Francia J L . Weighted Norm Inequalities and Related Topics. North-Holland Math Studies, Vol 116. Amsterdam: North Holland, 1985
[17]
Grafakos L , Liu L G , Yang D C . Vector-valued singular integrals and maximal functions on spaces of homogeneous type. Math Scand, 2009, 104 (2): 296- 310
CrossRef Google scholar
[18]
Han Y S . Calderón-type reproducing formula and the Tb theorem. Rev Mat Iberoam, 1994, 10: 51- 91
CrossRef Google scholar
[19]
Han Y S . Plancherel-Pôlya type inequality on spaces of homogeneous type and its applications. Proc Amer Math Soc, 1998, 126 (11): 3315- 3327
CrossRef Google scholar
[20]
Han Y S , Li J , Lin C C . Criterions of the L2 boundedness and sharp endpoint estimates for singular integral operators on product spaces of homogeneous type. Ann Sc Norm Super Pisa Cl Sci, 2016, 16 (3): 845- 907
[21]
Han Y S , Sawyer E T . Littlewood-Paley Theory on Spaces of Homogeneous Type and the Classical Function Spaces. Mem Amer Math Soc, Vol 110, No 530. Providence: Amer Math Soc, 1994
CrossRef Google scholar
[22]
Hart J , Torres R H . John-Nirenberg inequalities and weight invariant BMO spaces. J Geom Anal, 2019, 29 (2): 1608- 1648
CrossRef Google scholar
[23]
He Z Y , Han Y S , Li J , Liu L G , Yang D C , Yuan W . A complete real-variable theory of Hardy spaces on spaces of homogeneous type. J Fourier Anal Appl, 2019, 25 (5): 2197- 2267
CrossRef Google scholar
[24]
Hu G E , Lin H B , Yang D C . Commutators of the Hardy-Littlewood maximal operator with BMO symbols on spaces of homogeneous type. Abstr Appl Anal, 2008, 2008 (Mar): (21 pp)
[25]
Hu G E , Yang D C . Maximal commutators of BMO functions and singular integral operators with non-smooth kernels on spaces of homogeneous type. J Math Anal Appl, 2009, 354 (1): 249- 262
CrossRef Google scholar
[26]
Hytönen T , Kairema A . Systems of dyadic cubes in a doubling metric space. Colloq Math, 2012, 126 (1): 1- 33
CrossRef Google scholar
[27]
Krantz S G , Li S Y . Boundedness and compactness of integral operators on spaces of homogeneous type and applications, Ⅱ. J Math Anal Appl, 2001, 258: 642- 657
CrossRef Google scholar
[28]
Kronz M . Some function spaces on spaces of homogeneous type. Manuscripta Math, 2001, 106 (2): 219- 248
CrossRef Google scholar
[29]
Lanzani L , Stein E M . The Cauchy–Szegö projection for domains in C n with minimal smoothness. Duke Math J, 2017, 166: 125- 176
CrossRef Google scholar
[30]
Lerner A K . On weighted estimates of non-increasing rearrangements. East J Approx, 1998, 4: 277- 290
[31]
Macías R A , Segovia C . Lipschitz functions on spaces of homogeneous type. Adv Math, 1979, 33: 257- 270
CrossRef Google scholar
[32]
Milman M , Schonbek T . Second order estimates in interpolation theory and applications. Proc Amer Math Soc, 1990, 110 (4): 961- 969
CrossRef Google scholar
[33]
Nagel A , Stein E M . On the product theory of singular integrals. Rev Mat Iberoam, 2004, 20: 531- 561
[34]
Nagel A , Stein E M . ∂ ¯ b -complex on decoupled boundaries in C n . Ann of Math (2), 2006, 164 (2): 649- 713
CrossRef Google scholar
[35]
Pradolini G , Salinas O . Commutators of singular integrals on spaces of homogeneous type. Czechoslovak Math J, 2007, 57 (1): 75- 93
CrossRef Google scholar
[36]
Range R M . Holomorphic Functions and Integral Representations in Several Complex Variables. Grad Texts in Math, Vol 108. New York: Springer-Verlag, 1986
[37]
Rao M M , Ren Z D . Theory of Orlicz Spaces. New York: Marcel Dekker, 1991

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(322 KB)

Accesses

Citations

Detail

Sections
Recommended

/