Computing top eigenpairs of Hermitizable matrix

Mu-Fa CHEN, Zhi-Gang JIA, Hong-Kui PANG

PDF(653 KB)
PDF(653 KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (2) : 345-379. DOI: 10.1007/s11464-021-0909-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Computing top eigenpairs of Hermitizable matrix

Author information +
History +

Abstract

The top eigenpairs at the title mean the maximal, the submaximal, or a few of the subsequent eigenpairs of an Hermitizable matrix. Restricting on top ones is to handle with the matrices having large scale, for which only little is known up to now. This is different from some mature algorithms, that are clearly limited only to medium-sized matrix for calculating full spectrum. It is hoped that a combination of this paper with the earlier works, to be seen soon, may provide some effective algorithms for computing the spectrum in practice, especially for matrix mechanics.

Keywords

Hermitizable / Householder transformation / birth-death matrix / isospectral matrices / top eigenpairs / algorithm

Cite this article

Download citation ▾
Mu-Fa CHEN, Zhi-Gang JIA, Hong-Kui PANG. Computing top eigenpairs of Hermitizable matrix. Front. Math. China, 2021, 16(2): 345‒379 https://doi.org/10.1007/s11464-021-0909-6

References

[1]
Cao Z H. Matrix Eigenvalue Problem. Shanghai: Shanghai Scientific & Technical Publishers, 1983 (in Chinese)
[2]
Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. London: Springer, 2005
[3]
Chen M F. Efficient initials for computing maximal eigenpair. Front Math China, 2016, 11(6): 1379–1418
CrossRef Google scholar
[4]
Chen M F. Global algorithms for maximal eigenpair. Front Math China, 2017, 12(5): 1023–1043
CrossRef Google scholar
[5]
Chen M F. Hermitizable, isospectral complex matrices or differential operators. Front Math China, 2018, 13(6): 1267–1311
CrossRef Google scholar
[6]
Chen M F. On spectrum of Hermitizable tridiagonal matrices. Front Math China, 2020, 15(2): 285–303
CrossRef Google scholar
[7]
Chen M F, Li Y S. Development of powerful algorithm for maximal eigenpair. Front Math China, 2019, 14(3): 493–519
CrossRef Google scholar
[8]
Chung K L, Yan W M. The complex Householder transform. IEEE Trans Signal Process, 1997, 45(9): 2374–2376
CrossRef Google scholar
[9]
Golub G H, Van Loan C F. Matrix Computations. 4th ed. Baltimore: The Johns Hopkins Univ Press, 2013
[10]
Householder A S. Unitary triangularization of a nonsymmetric matrix. J Assoc Comput Mach, 1958, 5: 339–342
CrossRef Google scholar
[11]
Jiang E X. Symmetric Matrix Computation. Shanghai: Shanghai Scientific & Technical Publishers, 1984 (in Chinese)
[12]
Min C. A new understanding of the QR method. J Korean Soc Ind Appl Math, 2010, 14(1): 29–34
[13]
Niño A, Muñoz-Caro C, Reyes S. A concurrent object-oriented approach to the eigen- problem treatment in shared memory multicore environments. Lecture Notes in Computer Sci, Vol 6782. Cham: Springer, 2011, 630–642
CrossRef Google scholar
[14]
Parlett B N. The Symmetric Eigenvalue Problem. Philadelphia: SIAM, 1998
CrossRef Google scholar
[15]
Press W H, Teukolsky S A, Vetterling W T, Flannery B P. Numerical Recipes. The Art of Scientific Computing. 3rd ed. Cambridge: Cambridge Univ Press, 2007
[16]
Shukuzawa O, Suzuki T, Yokota I. Real tridiagonalization of Hermitian matrices by modified Householder transformation. Proc Japan Acad Ser A, 1996, 72(5): 102–103
CrossRef Google scholar
[17]
Wang Z J. Householder transformation for Hermitizable matrix. Master Thesis. Beijing: Beijing Normal Univ, 2018
[18]
Wilkinson J H. The Algebraic Eigenvalue Problem. Oxford: Oxford Univ Press, 1965

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(653 KB)

Accesses

Citations

Detail

Sections
Recommended

/