α-stable process,time change, functional inequality" /> α-stable process" /> α-stable process,time change, functional inequality" />

Functional inequalities for time-changed symmetric α-stable processes

Jian WANG , Longteng ZHANG

Front. Math. China ›› 2021, Vol. 16 ›› Issue (2) : 595 -622.

PDF (360KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (2) : 595 -622. DOI: 10.1007/s11464-021-0908-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Functional inequalities for time-changed symmetric α-stable processes

Author information +
History +
PDF (360KB)

Abstract

We establish sharp functional inequalities for time-changed symmetric α-stable processes on d with d1 and α(0,2), which yield explicit criteria for the compactness of the associated semigroups. Furthermore, when the time change is defined via the special function W(x)=(1+|x|)β with β>α we obtain optimal Nash-type inequalities, which in turn give us optimal upper bounds for the density function of the associated semigroups.

Keywords

α-stable process')">Symmetric α-stable process / time change, functional inequality

Cite this article

Download citation ▾
Jian WANG, Longteng ZHANG. Functional inequalities for time-changed symmetric α-stable processes. Front. Math. China, 2021, 16(2): 595-622 DOI:10.1007/s11464-021-0908-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bakry D, Gentil I, Ledoux M. Analysis and Geometry of Markov Diffusion Operators. Grundlehren Math Wiss, Vol 348. Berlin: Springer, 2014

[2]

Carlen E A,Kusuoka S, Stroock D W.Upper bounds for symmetric Markov transition functions. Ann Inst Henri Poincaré Probab Stat, 1987, 23: 245–287

[3]

ChenM F.Eigenvalues, Inequalities, and Ergodic Theory.London: Springer-Verlag, 2005

[4]

Chen X, Wang J.Intrinsic ultracontractivity for general Lévy processes on bounded open sets. Illinois J Math, 2014, 58: 1117–1144

[5]

Chen Z Q, Fukushima M. Symmetric Markov Processes, Time Change, and Boundary Theory. London Math Soc Monogr Ser, Vol 35. Princeton: Princeton Univ Press, 2011

[6]

Chen Z Q, Kim P, Kumagai T. Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math Ann, 2008, 342: 833–883

[7]

Chen Z Q, Kumagai T. Heat kernel estimates for stable-like processes on d-sets. Stochastic Process Appl, 2003, 108: 27–62

[8]

Chen Z Q, Wang J.Ergodicity for time changed symmetric stable processes. Stochastic Process Appl, 2014, 124: 2799–2823

[9]

Demengel F,Demengel G.Functional Spaces for the Theory of Elliptic Partial Differential Equations. Universitext. London: Springer-Verlag, 2012

[10]

Di Nezza E, PalatucciG,Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136: 521–573

[11]

Hurri-Syrjänen R, Vähäkangas A V. On fractional Poincaré inequalities. J Anal Math, 2013, 120: 85–104

[12]

Kumar R, Popovic L. Large deviations for multi-scale jump-diffusion processes. Stochastic Process Appl, 2017, 127: 1297–1320

[13]

Metafune G, Spina C. Elliptic operators with unbounded diffusion coefficients in Lp-spaces. Ann Sc Norm Super Pisa Cl Sci (5), 2012, 11(2): 303–340

[14]

Nguyen H M, Squassina M. Fractional Caffarelli-Kohn-Nirenberg inequalities. J Funct Anal, 2018, 274: 2661–2672

[15]

Spina C. Heat kernel estimates for an operator with unbounded diffusion coefficients in and ℝ2: Semigroup Forum, 2013, 86: 67–82

[16]

Wang F Y. Functional Inequalities, Markov Processes and Spectral Theory. Beijing: Science Press, 2005

[17]

Wang J. Compactness and density estimates for weighted fractional heat semigroups. J Theoret Probab, 2019, 172: 301–376

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (360KB)

479

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/