Minimal period estimates on P-symmetric periodic solutions of first-order mild superquadratic Hamiltonian systems

Xiaofei ZHANG, Chungen LIU

PDF(316 KB)
PDF(316 KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (1) : 239-253. DOI: 10.1007/s11464-021-0903-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Minimal period estimates on P-symmetric periodic solutions of first-order mild superquadratic Hamiltonian systems

Author information +
History +

Abstract

With the aid of P-index iteration theory, we consider the minimal period estimates on P-symmetric periodic solutions of nonlinear P-symmetric Hamiltonian systems with mild superquadratic growth.

Keywords

Hamiltonian system / P-symmetric periodic solution / P-index / minimal period

Cite this article

Download citation ▾
Xiaofei ZHANG, Chungen LIU. Minimal period estimates on P-symmetric periodic solutions of first-order mild superquadratic Hamiltonian systems. Front. Math. China, 2021, 16(1): 239‒253 https://doi.org/10.1007/s11464-021-0903-z

References

[1]
Abbondandolo A. Index estimates for strongly indefinite functionals, periodic orbits and homoclinic solutions of first order Hamiltonian systems. Calc Var Partial Differential Equations, 2000, 11: 395–430
CrossRef Google scholar
[2]
Abbondandolo A. Morse Theory for Hamiltonian Systems. Chapman & Hall/CRC Res Notes in Math, Vol 425. London: Chapman & Hall/CRC, 2001
CrossRef Google scholar
[3]
Chenciner A, Montgomery R. A remarkable periodic solution of the three body problem in the case of equal masses. Ann of Math, 2000, 152: 881–901
CrossRef Google scholar
[4]
Dong D, Long Y M. The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems. Trans Amer Math Soc, 1997, 349: 2619–2661
CrossRef Google scholar
[5]
Dong Y J. P-index theory for linear Hamiltonian systems and multiple solutions for nonlinear Hamiltonian systems. Nonlinearity, 2006, 19: 1275–1294
CrossRef Google scholar
[6]
Ekeland I, Hofer H. Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems. Invent Math, 1985, 81: 155–188
CrossRef Google scholar
[7]
Hu X J, Sun S Z. Index and stability of symmetric periodic orbits in Hamiltonian systems with application to figure-eight orbit. Comm Math Phys, 2009, 290: 737–777
CrossRef Google scholar
[8]
Hu X J, Sun S Z. Stability of relative equilibria and Morse index of central configurations. C R Acad Sci Paris, Ser I, 2009, 347: 1309–1312
CrossRef Google scholar
[9]
Hu X J, Sun S Z. Morse index and the stability of closed geodesics. Sci China Math, 2010, 53: 1207–1212
CrossRef Google scholar
[10]
Liu C G. Maslov P-index theory for a symplectic path with applications. Chin Ann Math Ser B, 2006, 27(4): 441–458
CrossRef Google scholar
[11]
Liu C G. Periodic solutions of asymptotically linear delay differential systems via Hamiltonian systems. J Differential Equations, 2012, 252: 5712–5734
CrossRef Google scholar
[12]
Liu C G. Relative index theories and applications. Topol Methods Nonlinear Anal, 2017, 49: 587–614
[13]
Liu C G. Index Theory in Nonlinear Analysis.Berlin/Beijing: Springer/Science Press, 2019
[14]
Liu C G, Long Y M. Iteration inequalities of the Maslov-type index theory with applications. J Differential Equations, 2000, 165: 355–376
CrossRef Google scholar
[15]
Liu C G, Tang S S. Maslov (P, ω)-index theory for symplectic paths. Adv Nonlinear Stud, 2015, 15: 963–990
CrossRef Google scholar
[16]
Liu C G, Tang S S. Iteration inequalities of the Maslov P-index theory with applications. Nonlinear Anal, 2015, 127: 215–234
[17]
Liu C G, Tang S S. Subharmonic Pl-solutions of first order Hamiltonian systems. J Math Anal Appl, 2017, 453: 338–359
CrossRef Google scholar
[18]
Liu C G, Zhou B X. Minimal P-symmetric period problem of first-order autonomous Hamiltonian systems. Front Math China, 2017, 12(3): 641–654
CrossRef Google scholar
[19]
Long Y M. Index Theory for Symplectic Paths with Applications. Progr Math, Vol 207. Basel: Birkhauser Verlag, 2002
CrossRef Google scholar
[20]
Rabinowitz P H. Periodic solutions of Hamiltonian systems. Comm Pure Appl Math, 1978, 31: 157–184
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(316 KB)

Accesses

Citations

Detail

Sections
Recommended

/