Minimal period estimates on P-symmetric periodic solutions of first-order mild superquadratic Hamiltonian systems

Xiaofei ZHANG , Chungen LIU

Front. Math. China ›› 2021, Vol. 16 ›› Issue (1) : 239 -253.

PDF (316KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (1) : 239 -253. DOI: 10.1007/s11464-021-0903-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Minimal period estimates on P-symmetric periodic solutions of first-order mild superquadratic Hamiltonian systems

Author information +
History +
PDF (316KB)

Abstract

With the aid of P-index iteration theory, we consider the minimal period estimates on P-symmetric periodic solutions of nonlinear P-symmetric Hamiltonian systems with mild superquadratic growth.

Keywords

Hamiltonian system / P-symmetric periodic solution / P-index / minimal period

Cite this article

Download citation ▾
Xiaofei ZHANG, Chungen LIU. Minimal period estimates on P-symmetric periodic solutions of first-order mild superquadratic Hamiltonian systems. Front. Math. China, 2021, 16(1): 239-253 DOI:10.1007/s11464-021-0903-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbondandolo A. Index estimates for strongly indefinite functionals, periodic orbits and homoclinic solutions of first order Hamiltonian systems. Calc Var Partial Differential Equations, 2000, 11: 395–430

[2]

Abbondandolo A. Morse Theory for Hamiltonian Systems. Chapman & Hall/CRC Res Notes in Math, Vol 425. London: Chapman & Hall/CRC, 2001

[3]

Chenciner A, Montgomery R. A remarkable periodic solution of the three body problem in the case of equal masses. Ann of Math, 2000, 152: 881–901

[4]

Dong D, Long Y M. The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems. Trans Amer Math Soc, 1997, 349: 2619–2661

[5]

Dong Y J. P-index theory for linear Hamiltonian systems and multiple solutions for nonlinear Hamiltonian systems. Nonlinearity, 2006, 19: 1275–1294

[6]

Ekeland I, Hofer H. Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems. Invent Math, 1985, 81: 155–188

[7]

Hu X J, Sun S Z. Index and stability of symmetric periodic orbits in Hamiltonian systems with application to figure-eight orbit. Comm Math Phys, 2009, 290: 737–777

[8]

Hu X J, Sun S Z. Stability of relative equilibria and Morse index of central configurations. C R Acad Sci Paris, Ser I, 2009, 347: 1309–1312

[9]

Hu X J, Sun S Z. Morse index and the stability of closed geodesics. Sci China Math, 2010, 53: 1207–1212

[10]

Liu C G. Maslov P-index theory for a symplectic path with applications. Chin Ann Math Ser B, 2006, 27(4): 441–458

[11]

Liu C G. Periodic solutions of asymptotically linear delay differential systems via Hamiltonian systems. J Differential Equations, 2012, 252: 5712–5734

[12]

Liu C G. Relative index theories and applications. Topol Methods Nonlinear Anal, 2017, 49: 587–614

[13]

Liu C G. Index Theory in Nonlinear Analysis.Berlin/Beijing: Springer/Science Press, 2019

[14]

Liu C G, Long Y M. Iteration inequalities of the Maslov-type index theory with applications. J Differential Equations, 2000, 165: 355–376

[15]

Liu C G, Tang S S. Maslov (P, ω)-index theory for symplectic paths. Adv Nonlinear Stud, 2015, 15: 963–990

[16]

Liu C G, Tang S S. Iteration inequalities of the Maslov P-index theory with applications. Nonlinear Anal, 2015, 127: 215–234

[17]

Liu C G, Tang S S. Subharmonic Pl-solutions of first order Hamiltonian systems. J Math Anal Appl, 2017, 453: 338–359

[18]

Liu C G, Zhou B X. Minimal P-symmetric period problem of first-order autonomous Hamiltonian systems. Front Math China, 2017, 12(3): 641–654

[19]

Long Y M. Index Theory for Symplectic Paths with Applications. Progr Math, Vol 207. Basel: Birkhauser Verlag, 2002

[20]

Rabinowitz P H. Periodic solutions of Hamiltonian systems. Comm Pure Appl Math, 1978, 31: 157–184

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (316KB)

1609

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/