Lα-convergenc" /> Lα-convergenc" /> Lα-convergenc" />

Convergence of complex martingale for a branching random walk in an independent and identically distributed environment

Xin WANG , Xingang LIANG , Chunmao HUANG

Front. Math. China ›› 2021, Vol. 16 ›› Issue (1) : 187 -209.

PDF (341KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (1) : 187 -209. DOI: 10.1007/s11464-021-0882-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Convergence of complex martingale for a branching random walk in an independent and identically distributed environment

Author information +
History +
PDF (341KB)

Abstract

We consider an d-valued discrete time branching random walk in an independent and identically distributed environment indexed by time n. Let Wn(z)(zd) be the natural complex martingale of the process. We show necessary and sufficient conditions for the Lα-convergence of Wn(z) for α>1, as well as its uniform convergence region.

Keywords

Branching random walk / random environment / moments / uniform convergence / complex martingale / Lα-convergenc')">Lα-convergenc

Cite this article

Download citation ▾
Xin WANG, Xingang LIANG, Chunmao HUANG. Convergence of complex martingale for a branching random walk in an independent and identically distributed environment. Front. Math. China, 2021, 16(1): 187-209 DOI:10.1007/s11464-021-0882-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Biggins J D. Martingale convergence in the branching random walk. J Appl Probab, 1977, 14(1): 25–37

[2]

Biggins J D. Uniform convergence of martingales in the one-dimensional branching random walk. In: Basawa I V, Taylor R L, eds. Selected Proc of the Sheffield Symp on Applied Probability. IMS Lecture Notes-Monograph Ser, Vol 18. Ann Arbor: Inst Math Stat, 1991, 159–173

[3]

Biggins J D. Uniform convergence of martingales in the branching random walk. Ann Probab, 1992, 20(1): 137–151

[4]

Biggins J D, Kyprianou A E. Measure change in multitype branching. Adv Appl Probab, 2004, 36(2): 544–581

[5]

Chow Y S, Teicher H. Probability Theory: Independence, Interchangeability and Martingales.New York: Springer-Verlag, 1988

[6]

Gao Z, Liu Q. Exact convergence rates in central limit theorems for a branching random walk with a random environment in time. Stochastic Process Appl, 2016, 126(9): 2634–2664

[7]

Gao Z, Liu Q, Wang H. Central limit theorems for a branching random walk with a random environment in time. Acta Math Sci, 2014, 34(2): 501–512

[8]

Grincevicjus A K. On the continuity of the distribution of a sum of dependent variables connected with independent walks on lines. Theory Probab Appl, 1974, 19(1): 163–168

[9]

Huang C, Liang X, Liu Q. Branching random walks with random environments in time. Front Math China, 2014, 9(4): 835–842

[10]

Huang C, Wang X, Wang X Q. Large and moderate deviations for a Rd-valued branching random walk with a random environment in time. Stochastics, 2020, 92(6): 944–968

[11]

Iksanov A, Kolesko K, Meiners M. Fluctuations of Biggins' martingales at complex parameters.arXiv: 1806.09943

[12]

Iksanov A, Liang X, Liu Q. On Lp-convergence of the Biggins martingale with complex parameter. J Math Anal Appl, 2019, 479(2): 1653–1669

[13]

Kolesko K, Meiners M. Convergence of complex martingales in the branching random walk: the boundary. Electron Commun Probab, 2017, 22(18): 1–14

[14]

Kuhlbusch D. On weighted branching processes in random environment. Stochastic Process Appl, 2004, 109(1): 113–144

[15]

Li Y, Liu Q, Peng X. Harmonic moments, large and moderate deviation principles for Mandelbrot's cascade in a random environment. Statist Probab Lett, 2019, 147: 57–65

[16]

Lyons R. A simple path to Biggins' martingale convergence for branching random walk. In: Athreya K B, Jagers P, eds. Classical and Modern Branching Processes. IMA Vol Math Appl, Vol 84. New York: Springer, 1997, 217–221

[17]

Mallein B, Miloś P. Maximal displacement of a supercritical branching random walk in a time-inhomogeneous random environment. Stochastic Process Appl, 2019, 129(9): 3239–3260

[18]

Nakashima M. Branching random walks in random environment and super-Brownian motion in random environment. Ann Inst Henri Poincaré Probab Stat, 2015, 51(4): 1251–1289

[19]

Wang X, Huang C. Convergence of martingale and moderate deviations for a branching random walk with a random environment in time. J Theoret Probab, 2017, 30(3): 961–995

[20]

Wang X, Huang C. Convergence of complex martingale for a branching random walk in a time random environment. Electron Commun Probab, 2019, 24(41): 1{14

[21]

Wang Y, Liu Z, Liu Q, Li Y. Asymptotic properties of a branching random walk with a random environment in time. Acta Math Sci Ser B Engl Ed, 2019, 39(5): 1345–1362

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (341KB)

650

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/