Mean-field type forward-backward doubly stochastic differential equations and related stochastic differential games
Qingfeng ZHU , Lijiao SU , Fuguo LIU , Yufeng SHI , Yong’ao SHEN , Shuyang WANG
Front. Math. China ›› 2020, Vol. 15 ›› Issue (6) : 1307 -1326.
Mean-field type forward-backward doubly stochastic differential equations and related stochastic differential games
We study a kind of partial information non-zero sum differential games of mean-field backward doubly stochastic differential equations, in which the coefficient contains not only the state process but also its marginal distribution, and the cost functional is also of mean-field type. It is required that the control is adapted to a sub-filtration of the filtration generated by the underlying Brownian motions. We establish a necessary condition in the form of maximum principle and a verification theorem, which is a sufficient condition for Nash equilibrium point. We use the theoretical results to deal with a partial information linear-quadratic (LQ) game, and obtain the unique Nash equilibrium point for our LQ game problem by virtue of the unique solvability of mean-field forward-backward doubly stochastic differential equation.
Non-zero sum stochastic differential game / mean-field / backward doubly stochastic differential equation (BDSDE) / Nash equilibrium point / aximum principle
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
Higher Education Press
/
| 〈 |
|
〉 |