Variable integral and smooth exponent Besov spaces associated to non-negative self-adjoint operators

Jingshi XU

Front. Math. China ›› 2020, Vol. 15 ›› Issue (6) : 1245 -1263.

PDF (337KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (6) : 1245 -1263. DOI: 10.1007/s11464-020-0886-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Variable integral and smooth exponent Besov spaces associated to non-negative self-adjoint operators

Author information +
History +
PDF (337KB)

Abstract

We introduce the variable integral and the smooth exponent Besov spaces associated to non-negative self-adjoint operators. Then we give the equivalent norms via the Peetre type maximal functions and atomic decomposition of these spaces.

Keywords

Besov space / variable exponent / maximal function / non-negative self-adjoint operators / atomic decomposition

Cite this article

Download citation ▾
Jingshi XU. Variable integral and smooth exponent Besov spaces associated to non-negative self-adjoint operators. Front. Math. China, 2020, 15(6): 1245-1263 DOI:10.1007/s11464-020-0886-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adamowicz T, Harjulehto P, Hästö P. Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces. Math Scand, 2015, 116: 5–22

[2]

Almeida A, Hästö P. Besov spaces with variable smoothness and integrability. J Funct Anal, 2010, 258: 1628–1655

[3]

Bui A, Cao J, Ky L D, Yang D, Yang S. Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Anal Geom Metr Spaces, 2014, 1: 69–129

[4]

Bui A, Duong X T. Laguerre operator and its associated weighted Besov and Triebel-Lizorkin spaces. Trans Amer Math Soc, 2017, 369: 2109–2150

[5]

Cao J, Chang D C, Wu H, Yang D. Weak Hardy spaces WHLp (ℝn) associated to operators satisfying k-Davies-Gaffney estimates. J Nonlinear Convex Anal, 2015, 16: 1205–1255

[6]

Cao J, Chang D C, Yang D, Yang S. Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces. Commun Pure Appl Anal, 2014, 13: 1435–1463

[7]

Cao J, Yang D, Yang S. Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators. Rev Mat Complut, 2013, 26: 99–114

[8]

Chen Y, Levine S, Rao R. Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math, 2006, 66: 1383–1406

[9]

Christ M. A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq Math, 1990, 60-61: 601–628

[10]

Cruz-Uribe D, Fiorenza A. Variable Lebesgue Spaces. Heidelberg: Springer, 2013

[11]

Cruz-Uribe D, Fiorenza A, Martell J, Pérez C. The boundedness of classical operators on variable Lp paces. Ann Acad Sci Fenn Math, 2006, 31: 239–264

[12]

Cruz-Uribe D, Fiorenza A, Ruzhansky M, Wirth J. Variable Lebesgue Spaces and Hyperbolic Systems. Basel: Birkhäuser, 2014

[13]

Cruz-Uribe D, Wang L A. Variable Hardy spaces. Indiana Univ Math J, 2014, 63: 447–493

[14]

Dekel S, Kerkyacharian G, Kyriazis G, Petrushev P. Hardy spaces associated with non-negative self-adjoint operators. Studia Math, 2017, 239: 17–54

[15]

Diening L, Harjulehto P, Hästö P, Mizuta Y, Shimomura T. Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann Acad Sci Fenn Math, 2009, 34: 503–522

[16]

Diening L, Harjulehto P, Hästö P, Růžička M. Lebesgue and Sobolev Spaces with Variable Exponents. Berlin: Springer, 2011

[17]

Diening L, Hästö P, Roudenko S. Function spaces of variable smoothness and integrability. J Funct Anal, 2009, 256: 1731–1768

[18]

Georgiadis A G, Kerkyacharian G, Kyriazis G, Petrushev P. Homogeneous Besov and Triebel-Lizorkin spaces associated to non-negative self-adjoint operators. J Math Anal Appl, 2017, 449: 1382–1412

[19]

Hu G. Besov and Triebel-Lizorkin spaces associated with non-negative self-adjoint operators. J Math Anal Appl, 2014, 411: 753–772

[20]

Jiang R, Yang D. New Orlicz-Hardy spaces associated with divergence form elliptic operators. J Funct Anal, 2010, 258: 1167–1224

[21]

Jiang R, Yang D. Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates. Commun Contemp Math, 2011, 13: 331–373

[22]

Jiang R, Yang D, Zhou Y. Orlicz-Hardy spaces associated with operators. Sci China Ser A, 2009, 52: 1042–1080

[23]

Kempka H. 2-Microlocal Besov and Triebel-Lizorkin spaces of variable integrability. Rev Mat Complut, 2009, 22: 227–251

[24]

Kempka H. Atomic, molecular and wavelet decomposition of generalized 2-microlocal Besov spaces. J Funct Spaces Appl, 2010, 8: 129–165

[25]

Kempka H, Vybíral J. Spaces of variable smoothness and integrability: characterizations by local means and ball means of differences. J Fourier Anal Appl, 2012, 18: 852–891

[26]

Kempka H, Vybíral J. A note on the spaces of variable integrability and summability of Almeida and Hästö. Proc Amer Math Soc, 2013, 141: 3207–3212

[27]

Kerkyacharian G, Petrushev P. Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans Amer Math Soc, 2015, 367: 121–189

[28]

Kovacik O, Rakosnik J. On spaces Lp(x) and Wk,p(x).Czechoslovak Math J, 1991, 41: 592–618

[29]

Krantz S G, Parks H G. A Primer of Real Analytic Functions. Basel: Birkhäuser, 1992

[30]

Liang Y, Yang D, Yang S. Applications of Orlicz-Hardy spaces associated with operators satisfying Poisson estimates. Sci China Math, 2011, 54: 2395–2426

[31]

Liu L, Yang D, Yuan W. Besov-type and Triebel-Lizorkin-type spaces associated with heat kernels. Collect Math, 2016, 67: 247–310

[32]

Nakai E, Sawano Y. Hardy spaces with variable exponents and generalized Campanato spaces. J Funct Anal 2012, 262: 3665–3748

[33]

Růžička M. Electrorheological Fluids: Modeling and Mathematical Theory. Berlin: Springer, 2000

[34]

Rychkov V. S. On a theorem of Bui, Paluszyński, and Taibleson. Proc Steklov Inst Math, 1999, 227: 280–292

[35]

Triebel H. Theory of Function Spaces. Monogr Math, Vol 78. Basel: Birkhäuser, 1983

[36]

Triebel H. Theory of Function Spaces II. Monogr Math, Vol 84. Basel: Birkhäuser, 1992

[37]

Triebel H. The Structure of Functions. Monogr Math, Vol 97. Basel: Birkhäuser, 2001

[38]

Triebel H. Theory of Function Spaces III. Monogr Math, Vol 100. Basel: Birkhäuser, 2006

[39]

Ullrich T. Continuous characterizations of Besov-Lizorkin-Triebel spaces and new interpretations as coorbits. J Funct Spaces Appl, 2012, 2012: Article ID 163213 (47 pp)

[40]

Xu J. Variable Besov spaces and Triebel-Lizorkin spaces. Ann Acad Sci Fenn Math, 2008, 33: 511–522

[41]

Yang D C, Yang D Y. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schrödinger operators. Front Math China, 2015, 10: 1203–1232

[42]

Yang D C, Yang S. Orlicz-Hardy spaces associated with divergence operators on unbounded strongly Lipschitz domains of ℝn.Indiana Univ Math J, 2012, 61: 81–129

[43]

Yang D C, Yang S. Local Hardy spaces of Musielak-Orlicz type and their applications. Sci China Math, 2012, 55: 1677–1720

[44]

Yang D C, Yang S. Real-variable characterizations of Orlicz-Hardy spaces on strongly Lipschitz domains of ℝn.Rev Mat Iberoam, 2013, 29: 237–292

[45]

Yang D C, Yang S. Musielak-Orlicz-Hardy spaces associated with operators and their applications. J Geom Anal, 2014, 24: 495–570

[46]

Yang D C, Yang S. Second-order Riesz transforms and maximal inequalities associated to magnetic Schrödinger operators. Canad Math Bull, 2015, 58: 432–448

[47]

Zhang J, Cao J, Jiang R, Yang D. Non-tangential maximal function characterizations of Hardy spaces associated to degenerate elliptic operators. Canad J Math, 2015, 67: 1161–1200

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (337KB)

569

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/