On intervals and sets of hypermatrices (tensors)

Saeed RAHMATI, Mohamed A. TAWHID

PDF(270 KB)
PDF(270 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (6) : 1175-1188. DOI: 10.1007/s11464-020-0884-3
RESEARCH ARTICLE
RESEARCH ARTICLE

On intervals and sets of hypermatrices (tensors)

Author information +
History +

Abstract

Interval hypermatrices (tensors) are introduced and interval α-hypermatrices are uniformly characterized using a finite set of 'extreme' hypermatrices, where α can be strong P, semi-positive, or positive definite, among many others. It is shown that a symmetric interval is an interval (strictly) copositive-hypermatrix if and only if it is an interval (E) E0-hypermatrix. It is also shown that an even-order, symmetric interval is an interval positive (semi-) definite-hypermatrix if and only if it is an interval P (P0)-hypermatrix. Interval hypermatrices are generalized to sets of hyper-matrices, several slice-properties of a set of hypermatrices are introduced and sets of hypermatrices with various slice-properties are uniformly characterized. As a consequence, several slice-properties of a compact, convex set of hyper-matrices are characterized by its extreme points.

Keywords

Tensor / hypermatrix / interval hypermatrix / hypermatrix set / slice-P-property

Cite this article

Download citation ▾
Saeed RAHMATI, Mohamed A. TAWHID. On intervals and sets of hypermatrices (tensors). Front. Math. China, 2020, 15(6): 1175‒1188 https://doi.org/10.1007/s11464-020-0884-3

References

[1]
Bai X, Huang Z, Wang Y. Global uniqueness and solvability for tensor complementarity problems. J Optim Theory Appl, 2016, 170(2): 72–84
CrossRef Google scholar
[2]
Kostrikin A I, Manin Yu I. Linear Algebra and Geometry. Algebra, Logic and Applications Ser, Vol 1. Amsterdam: Gordon and Breach Science Publishers, 1997
[3]
Landsberg J M. Tensors: Geometry and Applications. Grad Stud Math, Vol 128. Providence: Amer Math Soc, 2012
[4]
Lim L H. Tensors and hypermatrices. In: Hogben L, ed. Handbook of Linear Algebra. 2nd ed. Boca Raton: CRC Press, 2013, 15-1–15-28
[5]
Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40(6): 1302–1324
CrossRef Google scholar
[6]
Qi L. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl, 2013, 439(1): 228–238
CrossRef Google scholar
[7]
Rockafellar R T. Convex Analysis. Princeton Math Ser, Vol 28. Princeton: Princeton Univ Press, 1970
[8]
Rohn J, Rex G. Interval P-matrices. SIAM J Matrix Anal Appl, 1996, 17(4): 1020–1024
CrossRef Google scholar
[9]
Song Y, Gowda M S, Ravindran G. On some properties of P-matrix sets. Linear Algebra Appl, 1999, 290(1-3): 237–246
CrossRef Google scholar
[10]
Song Y S, Qi L. Necessary and sufficient conditions for copositive tensors. Linear Multilinear Algebra, 2015, 63(1): 120–131
CrossRef Google scholar
[11]
Song Y S, Qi L. Properties of some classes of structured tensors. J Optim Theory Appl, 2015, 165(3): 854–873
CrossRef Google scholar
[12]
Song Y S, Qi L. Tensor complementarity problem and semi-positive tensors. J Optim Theory Appl, 2016, 169(3): 1069–1078
CrossRef Google scholar
[13]
Tawhid M A, Rahmati S. Complementarity problems over a hypermatrix (tensor) set. Optim Lett, 2018, 12(6): 1443{1454
CrossRef Google scholar
[14]
Wilkinson J H. The Algebraic Eigenvalue Problem. Oxford: Clarendon Press, 1965

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(270 KB)

Accesses

Citations

Detail

Sections
Recommended

/