On intervals and sets of hypermatrices (tensors)
Saeed RAHMATI , Mohamed A. TAWHID
Front. Math. China ›› 2020, Vol. 15 ›› Issue (6) : 1175 -1188.
On intervals and sets of hypermatrices (tensors)
Interval hypermatrices (tensors) are introduced and interval -hypermatrices are uniformly characterized using a finite set of 'extreme' hypermatrices, where can be strong P, semi-positive, or positive definite, among many others. It is shown that a symmetric interval is an interval (strictly) copositive-hypermatrix if and only if it is an interval (E) E0-hypermatrix. It is also shown that an even-order, symmetric interval is an interval positive (semi-) definite-hypermatrix if and only if it is an interval P (P0)-hypermatrix. Interval hypermatrices are generalized to sets of hyper-matrices, several slice-properties of a set of hypermatrices are introduced and sets of hypermatrices with various slice-properties are uniformly characterized. As a consequence, several slice-properties of a compact, convex set of hyper-matrices are characterized by its extreme points.
Tensor / hypermatrix / interval hypermatrix / hypermatrix set / slice-P-property
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
Higher Education Press
/
| 〈 |
|
〉 |