Super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras

Zhuo ZHANG , Jixia YUAN , Xiaomin TANG

Front. Math. China ›› 2020, Vol. 15 ›› Issue (6) : 1295 -1306.

PDF (262KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (6) : 1295 -1306. DOI: 10.1007/s11464-020-0883-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras

Author information +
History +
PDF (262KB)

Abstract

We mainly study the super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras. In particular, we prove that all super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras are inner.

Keywords

Lie superalgebra / super-Virasoro algebras / super-biderivation / ner super-biderivations

Cite this article

Download citation ▾
Zhuo ZHANG, Jixia YUAN, Xiaomin TANG. Super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras. Front. Math. China, 2020, 15(6): 1295-1306 DOI:10.1007/s11464-020-0883-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brěsar M. On generalized biderivations and related maps. J Algebra, 1995, 172(3): 764–786

[2]

Chen Z X. Biderivations and linear commuting maps on simple generalized Witt algebras over a field. Electron J Linear Algebra, 2016, 31(1): 1–12

[3]

Cheng X, Wang M J, Sun J C, Zhang H L. Biderivations and linear commuting maps on the Lie algebras. Linear Multilinear Algebra, 2017, 65(12): 2483–2493

[4]

Du Y Q, Wang Y. Biderivations of generalized matrix algebras. Linear Algebra Appl, 2013, 438(11): 4483–4499

[5]

Fan G Z, Dai X S. Super-biderivations of Lie superalgebras. Linear Multilinear Algebra, 2017, 65(1): 58–66

[6]

Jiao Y, Liu W D. The derivations and the multiplicative Hom-structures of Filiform Lie Super-algebras Ln,m.Pure Appl Math, 2014, 30(5): 534–542

[7]

Kac V G. Lie superalgebras. Adv Math, 1977, 26: 8–96

[8]

Li J J, Fan G Z. Structures of not-finitely graded Lie superalgebras. J Gen Lie Theory Appl, 2016, 10(1): 5 papers

[9]

Li W H, Tang X M, Yuan J X. Super-biderivations and linear super-commuting maps on the super W-algebra W ˜(2, 2).Colloq Math, 2018, 153: 273–300

[10]

Liu X W, Guo X Q, Zhao K M. Biderivations of block Lie algebras. Linear Algebra Appl, 2018, 538(2): 43–55

[11]

Tang X M. Biderivations, linear commuting maps and commutative post-Lie algebra structures on W-algebras. Comm Algebra, 2017, 45(12): 5252–5261

[12]

Tang X M. Biderivations of finite-dimensional complex simple Lie algebra. Linear Multilinear Algebra, 2018, 66(2): 250–259

[13]

Wang D Y, Yu X X, Chen Z X. Biderivations of the parabolic subalgebras of simple Lie algebras. J Lie Theory, 2011, 39(11): 4097–4104

[14]

Xia C G, Han X, Wang D Y. Linear commuting maps and biderivations on Lie algebras W (a, b).J Lie Theory, 2016, 26(3): 777–786

[15]

Xia C G, Wang D Y, Han X. Linear super-commuting maps and super-biderivations on the super-Virasoro algebras. Comm Algebra, 2016, 44(12): 5342–5350

[16]

Yuan J X, Tang X M. Super-biderivations of classical simple Lie superalgebras. Aequationes Math, 2018, 92(1): 91–109

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (262KB)

526

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/