Super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras

Zhuo ZHANG, Jixia YUAN, Xiaomin TANG

PDF(262 KB)
PDF(262 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (6) : 1295-1306. DOI: 10.1007/s11464-020-0883-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras

Author information +
History +

Abstract

We mainly study the super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras. In particular, we prove that all super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras are inner.

Keywords

Lie superalgebra / super-Virasoro algebras / super-biderivation / ner super-biderivations

Cite this article

Download citation ▾
Zhuo ZHANG, Jixia YUAN, Xiaomin TANG. Super-biderivations of not-finitely graded Lie superalgebras related to generalized super-Virasoro algebras. Front. Math. China, 2020, 15(6): 1295‒1306 https://doi.org/10.1007/s11464-020-0883-4

References

[1]
Brěsar M. On generalized biderivations and related maps. J Algebra, 1995, 172(3): 764–786
CrossRef Google scholar
[2]
Chen Z X. Biderivations and linear commuting maps on simple generalized Witt algebras over a field. Electron J Linear Algebra, 2016, 31(1): 1–12
CrossRef Google scholar
[3]
Cheng X, Wang M J, Sun J C, Zhang H L. Biderivations and linear commuting maps on the Lie algebras. Linear Multilinear Algebra, 2017, 65(12): 2483–2493
CrossRef Google scholar
[4]
Du Y Q, Wang Y. Biderivations of generalized matrix algebras. Linear Algebra Appl, 2013, 438(11): 4483–4499
CrossRef Google scholar
[5]
Fan G Z, Dai X S. Super-biderivations of Lie superalgebras. Linear Multilinear Algebra, 2017, 65(1): 58–66
CrossRef Google scholar
[6]
Jiao Y, Liu W D. The derivations and the multiplicative Hom-structures of Filiform Lie Super-algebras Ln,m.Pure Appl Math, 2014, 30(5): 534–542
[7]
Kac V G. Lie superalgebras. Adv Math, 1977, 26: 8–96
CrossRef Google scholar
[8]
Li J J, Fan G Z. Structures of not-finitely graded Lie superalgebras. J Gen Lie Theory Appl, 2016, 10(1): 5 papers
CrossRef Google scholar
[9]
Li W H, Tang X M, Yuan J X. Super-biderivations and linear super-commuting maps on the super W-algebra W ˜(2, 2).Colloq Math, 2018, 153: 273–300
[10]
Liu X W, Guo X Q, Zhao K M. Biderivations of block Lie algebras. Linear Algebra Appl, 2018, 538(2): 43–55
CrossRef Google scholar
[11]
Tang X M. Biderivations, linear commuting maps and commutative post-Lie algebra structures on W-algebras. Comm Algebra, 2017, 45(12): 5252–5261
CrossRef Google scholar
[12]
Tang X M. Biderivations of finite-dimensional complex simple Lie algebra. Linear Multilinear Algebra, 2018, 66(2): 250–259
CrossRef Google scholar
[13]
Wang D Y, Yu X X, Chen Z X. Biderivations of the parabolic subalgebras of simple Lie algebras. J Lie Theory, 2011, 39(11): 4097–4104
CrossRef Google scholar
[14]
Xia C G, Han X, Wang D Y. Linear commuting maps and biderivations on Lie algebras W (a, b).J Lie Theory, 2016, 26(3): 777–786
[15]
Xia C G, Wang D Y, Han X. Linear super-commuting maps and super-biderivations on the super-Virasoro algebras. Comm Algebra, 2016, 44(12): 5342–5350
CrossRef Google scholar
[16]
Yuan J X, Tang X M. Super-biderivations of classical simple Lie superalgebras. Aequationes Math, 2018, 92(1): 91–109
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(262 KB)

Accesses

Citations

Detail

Sections
Recommended

/