Pure projective modules and FP-injective modules over Morita rings

Meiqi YAN, Hailou YAO

PDF(350 KB)
PDF(350 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (6) : 1265-1293. DOI: 10.1007/s11464-020-0877-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Pure projective modules and FP-injective modules over Morita rings

Author information +
History +

Abstract

Let Λ(0,0)=(AANBBNAB) be a Morita ring, where the bimodule homomorphisms ϕand ψ are zero. We study the finite presentedness, locally coherence, pure projectivity, pure injectivity, and FP-injectivity of modules over Λ(0,0). Some applications are then given.

Keywords

Morita ring / finitely presented / pure projective / pure injective / locally coherent / FP-injective

Cite this article

Download citation ▾
Meiqi YAN, Hailou YAO. Pure projective modules and FP-injective modules over Morita rings. Front. Math. China, 2020, 15(6): 1265‒1293 https://doi.org/10.1007/s11464-020-0877-2

References

[1]
Bouchiba S, Khaloui M. Periodic short exact sequences and periodic pure-exact sequences. J Algebra Appl, 2010, 9(6): 859–870
CrossRef Google scholar
[2]
Cheng F C, Yi Z. Homological Dimension of Rings. Guilin: Guangxi Normal Univ Press, 2000 (in Chinese)
[3]
Cohn P M. On the free product of associative rings. Math Z, 1959, 71: 380–398
CrossRef Google scholar
[4]
Dauns J. Modules and Rings. New York: Cambridge Univ Press, 1994
CrossRef Google scholar
[5]
Ding N Q, Chen J L. Coherent rings with finite self-FP-injective dimension. Comm Algebra, 1996, 24(9): 2963–2980
CrossRef Google scholar
[6]
Ding N Q, Li Y L, Mao L X. J-coherent rings. J Algebra Appl, 2009, 8(2): 139–155
CrossRef Google scholar
[7]
Gao N, Psaroudakis C. Gorenstein homological aspects of monomorphism categories via Morita rings. Algebr Represent Theory, 2017, 20(2): 487–529
CrossRef Google scholar
[8]
Göbel R, Trlifaj J. Approximations and Endomorphism Algebras of Modules. De Gruyter Exp Math, Vol 41. Berlin: Walter de Gruyter GmbH Co KG, 2006
CrossRef Google scholar
[9]
Green E L. On the representation theory of rings in matrix form. Pacific J Math, 1982, 100(1): 123–138
CrossRef Google scholar
[10]
Green E L, Psaroudakis C. On Artin algebras arising from Morita contexts. Algebr Represent Theory, 2014, 17(5): 1485–1525
CrossRef Google scholar
[11]
Haghany A, Mazrooei M, Vedadi M R. Pure projectivity and pure injectivity over formal triangular matrix rings. J Algebra Appl, 2012, 11(6): 1250107 (13 pp)
CrossRef Google scholar
[12]
Kiełpiński R. On Γ-pure injective modules. Bull Acad Polon Sci Sér Sci Math Astronom Phys, 1967, 15: 127–131
[13]
Krylov P A, Tuganbaev A A. Modules over formal matrix rings. J Math Sci (N Y), 2010, 171(2): 248–295
CrossRef Google scholar
[14]
Li W Q, Guan J C, Ouyang B Y. Strongly FP-injective modules. Comm Algebra, 2017, 45(9): 3816–3824
CrossRef Google scholar
[15]
Mao L X, Ding N Q. Gorenstein FP-injective and Gorenstein flat modules. J Algebra Appl, 2008, 7(4): 491–506
CrossRef Google scholar
[16]
Palmér I. The global homological dimension of semi-trivial extensions of rings. Math Scand, 1975, 37(2): 223–256
CrossRef Google scholar
[17]
Pinzon K. Absolutely pure covers. Comm Algebra, 2008, 36(6): 2186–2194
CrossRef Google scholar
[18]
Psaroudakis C. Homological theory of recollements of abelian categories. J Algebra, 2014, 398: 63–110
CrossRef Google scholar
[19]
Stenström B. Coherent rings and FP-injective modules. J Lond Math Soc, 1970, 2: 323–329
CrossRef Google scholar
[20]
Tang G H, Li C N, Zhou Y Q. Study of Morita contexts. Comm Algebra, 2014, 42(4): 1668–1681
CrossRef Google scholar
[21]
Warfield R B. Purity and algebraic compactness for modules. Pacific J Math, 1969, 28: 699–719
CrossRef Google scholar
[22]
Wisbauer R. Foundations of Module and Ring Theory. London: Gordon and Breach, 1991
[23]
Zhang X X, Chen J L. Free modules over rings of Morita contexts. J Southeast Univ Nat Sci, 2001, 31(5): 140–145 (in Chinese)
[24]
Zheng Y F, Huang Z Y. On pure derived categories. J Algebra, 2016, 454: 252–272
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(350 KB)

Accesses

Citations

Detail

Sections
Recommended

/