A note on residual allocation models

Shui FENG

Front. Math. China ›› 2021, Vol. 16 ›› Issue (2) : 381 -394.

PDF (276KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (2) : 381 -394. DOI: 10.1007/s11464-020-0871-8
RESEARCH ARTICLE
RESEARCH ARTICLE

A note on residual allocation models

Author information +
History +
PDF (276KB)

Abstract

Residual allocation models (RAMs) arise in many subjects including Bayesian statistics, combinatorics, ecology, finance, information theory, machine learning, and population genetics. In this paper, we give a brief review of RAM and presents a few examples where the model arises. An extended discussion will focus a concrete model, the GEM distribution, and its ordered analogue, the Poisson-Dirichlet distribution. The paper concludes with a discussion of the GEM process.

Keywords

GEM distribution / Poisson-Dirichlet distribution / stick-breaking / GEM process

Cite this article

Download citation ▾
Shui FENG. A note on residual allocation models. Front. Math. China, 2021, 16(2): 381-394 DOI:10.1007/s11464-020-0871-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ewens W J. Mathematical Population Genetics, Vol I. New York: Springer-Verlag, 2004

[2]

Feng S. The Poisson-Dirichlet Distribution and Related Topics. Heidelberg: Springer, 2010

[3]

Feng S, Wang F Y. A class of infinite-dimensional diffusion processes with connection to population genetics. J Appl Probab, 2007, 44: 938–949

[4]

Ferguson T S. A Baysian analysis of some nonparametric problems. Ann Statist, 1973, 1: 209–230

[5]

Fisher R A, Corbet A S, Williams C B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. J Animal Ecology, 1943, 12: 42–58

[6]

Griffiths R C. Exact sampling distribution from the infinite neutral alleles models. Adv in Appl Probab, 1979, 11: 326–354

[7]

Halmos P R. Random alms. Ann Math Statist, 1944, 15: 182–189

[8]

Herfindahl O C. Concentration in the U.S. Steel Industry. Doctoral Dissertation. Columbia University, 1950

[9]

Hirschman A O. National Power and the Structure of Foreign Trade. Berkeley: Univ of California Press, 1945

[10]

McCloskey J W. A Model for the Distribution of Individuals by Species in an Environ- ment. Ph D Thesis, Michigan State Univ, 1965

[11]

Pitman J, Yor M. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann Probab, 1997, 25(2): 855–900

[12]

Rasmussen C D. The infinite Gaussian mixture model. In: Solla S A, Leen T K, Müller K-R, eds. Advances in Neutral Information Processing Systems, 12. Boston: MIT Press, 2000, 554–560

[13]

Sethuraman J A. A constructive definition of Dirichlet priors. Statist Sinica, 1994, 4: 639–650

[14]

Shepp L A, Lloyd S P. Ordered cycle length in a random permutation. Trans Amer Math Soc, 1966, 121: 340–357

[15]

Simpson E H. Measurement of diversity. Nature, 1949, 163: 688–688

[16]

Teh Y W, Jordon M I, Beal M J, Blei D M. Hierarchical Dirichlet processes. J Amer Statist Assoc, 2006, 101: 1566–1581

[17]

Vershik A M. The asymptotic distribution of factorizations of natural numbers into prime divisors. Soviet Math Dokl, 1986, 34: 57–61

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (276KB)

380

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/