Ground state solutions for a non-autonomous nonlinear Schrödinger-KdV system

Wenjing BI , Chunlei TANG

Front. Math. China ›› 2020, Vol. 15 ›› Issue (5) : 851 -866.

PDF (275KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (5) : 851 -866. DOI: 10.1007/s11464-020-0867-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Ground state solutions for a non-autonomous nonlinear Schrödinger-KdV system

Author information +
History +
PDF (275KB)

Abstract

We study the Schrödinger-KdV system

{Δu+λ1(x)u=u3+βuv,uH1(N),Δv+λ2(x)v=12v2+β2u2,vH1(N),

where N=1,2,3, λi(x)C(N,),lim|x|λi(x)=λi(), and λi(x)λi(),i= 1,2,a.e. xN.We obtain the existence of nontrivial ground state solutions for the above system by variational methods and the Nehari manifold.

Keywords

Schrödinger-KdV system / variational methods / Nehari manifold / ground state solutions

Cite this article

Download citation ▾
Wenjing BI, Chunlei TANG. Ground state solutions for a non-autonomous nonlinear Schrödinger-KdV system. Front. Math. China, 2020, 15(5): 851-866 DOI:10.1007/s11464-020-0867-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albert J, Bhattarai S. Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system. Adv Differential Equations, 2013, 18: 1129–1164

[2]

Albert J, Pava J A. Existence and stability of ground-states solutions of a Schrödinger-Kdv system. Proc Roy Soc Edinburgh Sect A, 2003, 133(05): 987–1029

[3]

Ardila A H. Orbital stability of standing waves for a system of nonlinear Schrödinger equations with three wave interaction. Nonlinear Anal, 2018, 167: 1–20

[4]

Ardila A H. Existence and stability of a two-parameter family of solitary waves for a logarithmic NLS-KdV system. Nonlinear Anal, 2019, 189: 111563

[5]

Colorado E. Existence of bound and ground states for a system of coupled nonlinear Schrödinger-KdV equations. C R Math Acad Sci Paris, 2015, 353(6): 511–516

[6]

Colorado E. On the existence of bound and ground states for some coupled nonlinear Schrödinger-Korteweg-de Vries equations. Adv Nonlinear Anal, 2017, 6(4): 407–426

[7]

Dias J P, Mário Figueira, Oliveira F. Existence of bound states for the coupled Schrödinger-KdV system with cubic nonlinearity. C R Math Acad Sci Paris, 2010, 348(19-20): 1079–1082

[8]

Funakoshi M, Oikawa M. The resonant interaction between a long internal gravity wave and a surface gravity wave packer packet. J Phys Soc Jpn, 1983, 52(6): 1982–1995

[9]

Kawahara T, Sugimoto N, Kakutani T. Nonlinear interaction between short and long capillary-gravity waves. J Phys Soc Jpn, 1975, 39(5): 1379–1386

[10]

Makhankov V G. On stationary solutions of the Schrödinger equation with a selfconsistent potential satisfying Boussinesqs equation. Phys Lett A, 1974, 50(1): 42–44

[11]

Nishikawa K, Hojo H, Mima H, Ikezi H. Coupled nonlinear electron-plasma and ionacoustic waves. Phys Rev Lett, 1974, 33(3): 148–151

[12]

Rabinowitz P H. On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43(2): 270–291

[13]

Willem M. Minimax Theorems. Progr Nonlinear Differential Equations Appl, Vol 24. Boston: Birkhäuser, 1996

[14]

Yajima N, Satsuma J. Soliton solutions in a diatomic lattice system. Prog Theor Phys, 1979, 62(2): 370–378

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (275KB)

631

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/