Ground state solutions for a non-autonomous nonlinear Schrödinger-KdV system

Wenjing BI, Chunlei TANG

PDF(275 KB)
PDF(275 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (5) : 851-866. DOI: 10.1007/s11464-020-0867-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Ground state solutions for a non-autonomous nonlinear Schrödinger-KdV system

Author information +
History +

Abstract

We study the Schrödinger-KdV system

{Δu+λ1(x)u=u3+βuv,uH1(N),Δv+λ2(x)v=12v2+β2u2,vH1(N),

where N=1,2,3, λi(x)C(N,),lim|x|λi(x)=λi(), and λi(x)λi(),i= 1,2,a.e. xN.We obtain the existence of nontrivial ground state solutions for the above system by variational methods and the Nehari manifold.

Keywords

Schrödinger-KdV system / variational methods / Nehari manifold / ground state solutions

Cite this article

Download citation ▾
Wenjing BI, Chunlei TANG. Ground state solutions for a non-autonomous nonlinear Schrödinger-KdV system. Front. Math. China, 2020, 15(5): 851‒866 https://doi.org/10.1007/s11464-020-0867-4

References

[1]
Albert J, Bhattarai S. Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system. Adv Differential Equations, 2013, 18: 1129–1164
[2]
Albert J, Pava J A. Existence and stability of ground-states solutions of a Schrödinger-Kdv system. Proc Roy Soc Edinburgh Sect A, 2003, 133(05): 987–1029
CrossRef Google scholar
[3]
Ardila A H. Orbital stability of standing waves for a system of nonlinear Schrödinger equations with three wave interaction. Nonlinear Anal, 2018, 167: 1–20
CrossRef Google scholar
[4]
Ardila A H. Existence and stability of a two-parameter family of solitary waves for a logarithmic NLS-KdV system. Nonlinear Anal, 2019, 189: 111563
CrossRef Google scholar
[5]
Colorado E. Existence of bound and ground states for a system of coupled nonlinear Schrödinger-KdV equations. C R Math Acad Sci Paris, 2015, 353(6): 511–516
CrossRef Google scholar
[6]
Colorado E. On the existence of bound and ground states for some coupled nonlinear Schrödinger-Korteweg-de Vries equations. Adv Nonlinear Anal, 2017, 6(4): 407–426
CrossRef Google scholar
[7]
Dias J P, Mário Figueira, Oliveira F. Existence of bound states for the coupled Schrödinger-KdV system with cubic nonlinearity. C R Math Acad Sci Paris, 2010, 348(19-20): 1079–1082
CrossRef Google scholar
[8]
Funakoshi M, Oikawa M. The resonant interaction between a long internal gravity wave and a surface gravity wave packer packet. J Phys Soc Jpn, 1983, 52(6): 1982–1995
CrossRef Google scholar
[9]
Kawahara T, Sugimoto N, Kakutani T. Nonlinear interaction between short and long capillary-gravity waves. J Phys Soc Jpn, 1975, 39(5): 1379–1386
CrossRef Google scholar
[10]
Makhankov V G. On stationary solutions of the Schrödinger equation with a selfconsistent potential satisfying Boussinesqs equation. Phys Lett A, 1974, 50(1): 42–44
CrossRef Google scholar
[11]
Nishikawa K, Hojo H, Mima H, Ikezi H. Coupled nonlinear electron-plasma and ionacoustic waves. Phys Rev Lett, 1974, 33(3): 148–151
CrossRef Google scholar
[12]
Rabinowitz P H. On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43(2): 270–291
CrossRef Google scholar
[13]
Willem M. Minimax Theorems. Progr Nonlinear Differential Equations Appl, Vol 24. Boston: Birkhäuser, 1996
CrossRef Google scholar
[14]
Yajima N, Satsuma J. Soliton solutions in a diatomic lattice system. Prog Theor Phys, 1979, 62(2): 370–378
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(275 KB)

Accesses

Citations

Detail

Sections
Recommended

/