Superminimal surfaces in hyperquadric Q2
Jun WANG , Jie FEI
Front. Math. China ›› 2020, Vol. 15 ›› Issue (5) : 1035 -1046.
Superminimal surfaces in hyperquadric Q2
We study a superminimal surface M immersed into a hyperquadric Q2 in several cases classified by two global defined functions and , which were introduced by X. X. Jiao and J. Wang to study a minimal immersion f : . In case both and are not identically zero, it is proved that f is superminimal if and only if f is totally real or is also minimal, where is the standard inclusion map. In the rest case that or , the minimal immersion f is automatically superminimal. As a consequence, all the superminimal two-spheres in Q2 are completely described.
Hyperquadric / superminimal surface / totally real / holomorphic
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
Higher Education Press
/
| 〈 |
|
〉 |