Finite dimensional modules over quantum toroidal algebras

Limeng XIA

PDF(277 KB)
PDF(277 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (3) : 593-600. DOI: 10.1007/s11464-020-0846-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Finite dimensional modules over quantum toroidal algebras

Author information +
History +

Abstract

For all generic qC*, when g is not of type A1; we prove that the quantum toroidal algebra Uq(gtor) has no nontrivial finite dimensional simple module.

Keywords

Quantum toroidal algebra / finite dimensional module

Cite this article

Download citation ▾
Limeng XIA. Finite dimensional modules over quantum toroidal algebras. Front. Math. China, 2020, 15(3): 593‒600 https://doi.org/10.1007/s11464-020-0846-9

References

[1]
Beck J. Convex bases of PBW type for quantum affine algebras. Comm Math Phys, 1994, 165: 193–199
CrossRef Google scholar
[2]
Block R E. The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra. Adv Math, 1981, 39: 69–110
CrossRef Google scholar
[3]
Chari V, Pressley A. Quantum affine algebras. Comm Math Phys, 1991, 142: 261–283
CrossRef Google scholar
[4]
Chari V, Pressley A. Minimal affinizations of representations of quantum groups: The nonsimply-laced case. Lett Math Phys, 1995, 35: 99–114
CrossRef Google scholar
[5]
Chari V, Pressley A. Minimal affinizations of representations of quantum groups: The simply-laced case. J Algebra, 1996, 184: 1–30
CrossRef Google scholar
[6]
Drinfeld V. A new realization of Yangians and quantized affine algebras. Soviet Math Dokl, 1988, 36: 212–216
[7]
Frenkel I, Jing N, Wang W. Quantum vertex representations via finite groups and the McKay correspondence . Comm Math Phys,2000, 211: 365–393
CrossRef Google scholar
[8]
Ginzburg V, Kapranov M, Vasserot E. Langlands reciprocity for algebraic surfaces. Math Res Lett, 1995, 2: 147–160
CrossRef Google scholar
[9]
Hernandez D. Quantum toroidal algebras and their representations. Selecta Math (N S), 2009, 14: 701–725
CrossRef Google scholar
[10]
Jantzen J C. Lectures on Quantum Groups. Grad Stud Math, Vol 6. Providence: Amer Math Soc, 1996
[11]
Miki K. Toroidal and level 0 U0 q(b sln+1) actions on Uq(b gln+1)-modules. J Math Phys, 1999, 40: 3191–3210
CrossRef Google scholar
[12]
Miki K. Representations of quantum toroidal algebra Uq(sln+1,tor)(n>2). J Math Phys, 2000, 41: 7079–7098
CrossRef Google scholar
[13]
Miki K. Quantum toroidal algebra Uq(sl2,tor) and R matrices. J Math Phys, 2001, 42: 2293–2308
CrossRef Google scholar
[14]
Saito Y. Quantum toroidal algebras and their vertex representations. Publ RIMS Kyoto Univ, 1998, 34: 155–177
CrossRef Google scholar
[15]
Varagnolo M, Vasserot E. Schur duality in the toroidal setting. Comm Math Phys, 1996, 182: 469–484
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(277 KB)

Accesses

Citations

Detail

Sections
Recommended

/