Finite dimensional modules over quantum toroidal algebras
Limeng XIA
Finite dimensional modules over quantum toroidal algebras
For all generic , when g is not of type A1; we prove that the quantum toroidal algebra Uq(gtor) has no nontrivial finite dimensional simple module.
Quantum toroidal algebra / finite dimensional module
[1] |
Beck J. Convex bases of PBW type for quantum affine algebras. Comm Math Phys, 1994, 165: 193–199
CrossRef
Google scholar
|
[2] |
Block R E. The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra. Adv Math, 1981, 39: 69–110
CrossRef
Google scholar
|
[3] |
Chari V, Pressley A. Quantum affine algebras. Comm Math Phys, 1991, 142: 261–283
CrossRef
Google scholar
|
[4] |
Chari V, Pressley A. Minimal affinizations of representations of quantum groups: The nonsimply-laced case. Lett Math Phys, 1995, 35: 99–114
CrossRef
Google scholar
|
[5] |
Chari V, Pressley A. Minimal affinizations of representations of quantum groups: The simply-laced case. J Algebra, 1996, 184: 1–30
CrossRef
Google scholar
|
[6] |
Drinfeld V. A new realization of Yangians and quantized affine algebras. Soviet Math Dokl, 1988, 36: 212–216
|
[7] |
Frenkel I, Jing N, Wang W. Quantum vertex representations via finite groups and the McKay correspondence . Comm Math Phys,2000, 211: 365–393
CrossRef
Google scholar
|
[8] |
Ginzburg V, Kapranov M, Vasserot E. Langlands reciprocity for algebraic surfaces. Math Res Lett, 1995, 2: 147–160
CrossRef
Google scholar
|
[9] |
Hernandez D. Quantum toroidal algebras and their representations. Selecta Math (N S), 2009, 14: 701–725
CrossRef
Google scholar
|
[10] |
Jantzen J C. Lectures on Quantum Groups. Grad Stud Math, Vol 6. Providence: Amer Math Soc, 1996
|
[11] |
Miki K. Toroidal and level 0 U0 q(b sln+1) actions on Uq(b gln+1)-modules. J Math Phys, 1999, 40: 3191–3210
CrossRef
Google scholar
|
[12] |
Miki K. Representations of quantum toroidal algebra Uq(sln+1,tor)(n>2). J Math Phys, 2000, 41: 7079–7098
CrossRef
Google scholar
|
[13] |
Miki K. Quantum toroidal algebra Uq(sl2,tor) and R matrices. J Math Phys, 2001, 42: 2293–2308
CrossRef
Google scholar
|
[14] |
Saito Y. Quantum toroidal algebras and their vertex representations. Publ RIMS Kyoto Univ, 1998, 34: 155–177
CrossRef
Google scholar
|
[15] |
Varagnolo M, Vasserot E. Schur duality in the toroidal setting. Comm Math Phys, 1996, 182: 469–484
CrossRef
Google scholar
|
/
〈 | 〉 |