On B6- and B7-groups

Tianyi ZHONG, Yilan TAN

PDF(223 KB)
PDF(223 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (3) : 613-616. DOI: 10.1007/s11464-020-0841-1
RESEARCH ARTICLE
RESEARCH ARTICLE

On B6- and B7-groups

Author information +
History +

Abstract

A finite group G is said to be a Bn-group if any n-element subset A = {a1, a2,..., an} of G satisfies |A2|=|{aiaj|1i,jn}|n(n+1)/2. In this paper, the characterizations of the B6- and B7-groups are given.

Keywords

Bn-groups, B(n / k) groups, small squaring property, nonabelian groups

Cite this article

Download citation ▾
Tianyi ZHONG, Yilan TAN. On B6- and B7-groups. Front. Math. China, 2020, 15(3): 613‒616 https://doi.org/10.1007/s11464-020-0841-1

References

[1]
Berkovich Y G, Freiman G A, Praeger C E. Small squaring and cubing properties for finite groups. Bull Aust Math Soc, 1991, 44: 429–450
CrossRef Google scholar
[2]
Brailovsky L. A characterization of abelian groups. Proc Amer Math Soc, 1993, 117(3): 627–629
CrossRef Google scholar
[3]
Eddy T, Parmenter M M. Groups with restricted squaring properties. Ars Combin, 2012, 104: 321–331
[4]
Freiman G A. On two- and three-element subsets of groups. Aequationes Math, 1981, 22: 140–152
CrossRef Google scholar
[5]
Huang H, Li Y. On B(4,14) non-2-groups. J Algebra Appl, 2015, 14(8): 1550118 (14pp)
CrossRef Google scholar
[6]
Huang H, Li Y. On B(5,18) groups. Comm Algebra, 2016, 44(2): 568–590
CrossRef Google scholar
[7]
Li Y, Pan X. On B(5,k)-groups. Bull Aust Math Soc, 2011, 84: 393–407
CrossRef Google scholar
[8]
Li Y, Tan Y. On B(4,k) groups. J Algebra Appl, 2010, 9: 27–42
CrossRef Google scholar
[9]
Li Y, Tan Y. On B(4,13) 2-groups. Comm Algebra, 2011, 39: 3769–3780
CrossRef Google scholar
[10]
Li Y, Tan Y. On B5-groups. Ars Combin, 2014, 114: 3–14
[11]
Longobardi P, Maj M. The classification of groups with the small squaring property on 3-sets. Bull Aust Math Soc, 1992, 46: 263–269
CrossRef Google scholar
[12]
Parmenter M M. On groups with redundancy in multiplication, Ars Combin, 2002, 63: 119–127
[13]
Tan Y, Zhong T. On B(5,19) non-2-groups. Comm Algebra, 2020, 48: 663–667
CrossRef Google scholar
[14]
The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.10.0. 2018
[15]
Wang H, Tan Y, Moss T. On B(n,k) 2-groups. Comm Algebra, 2015, 43: 4655–4659
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(223 KB)

Accesses

Citations

Detail

Sections
Recommended

/