On B6- and B7-groups
Tianyi ZHONG, Yilan TAN
On B6- and B7-groups
A finite group G is said to be a Bn-group if any n-element subset A = {a1, a2,..., an} of G satisfies . In this paper, the characterizations of the B6- and B7-groups are given.
Bn-groups, B(n / k) groups, small squaring property, nonabelian groups
[1] |
Berkovich Y G, Freiman G A, Praeger C E. Small squaring and cubing properties for finite groups. Bull Aust Math Soc, 1991, 44: 429–450
CrossRef
Google scholar
|
[2] |
Brailovsky L. A characterization of abelian groups. Proc Amer Math Soc, 1993, 117(3): 627–629
CrossRef
Google scholar
|
[3] |
Eddy T, Parmenter M M. Groups with restricted squaring properties. Ars Combin, 2012, 104: 321–331
|
[4] |
Freiman G A. On two- and three-element subsets of groups. Aequationes Math, 1981, 22: 140–152
CrossRef
Google scholar
|
[5] |
Huang H, Li Y. On B(4,14) non-2-groups. J Algebra Appl, 2015, 14(8): 1550118 (14pp)
CrossRef
Google scholar
|
[6] |
Huang H, Li Y. On B(5,18) groups. Comm Algebra, 2016, 44(2): 568–590
CrossRef
Google scholar
|
[7] |
Li Y, Pan X. On B(5,k)-groups. Bull Aust Math Soc, 2011, 84: 393–407
CrossRef
Google scholar
|
[8] |
Li Y, Tan Y. On B(4,k) groups. J Algebra Appl, 2010, 9: 27–42
CrossRef
Google scholar
|
[9] |
Li Y, Tan Y. On B(4,13) 2-groups. Comm Algebra, 2011, 39: 3769–3780
CrossRef
Google scholar
|
[10] |
Li Y, Tan Y. On B5-groups. Ars Combin, 2014, 114: 3–14
|
[11] |
Longobardi P, Maj M. The classification of groups with the small squaring property on 3-sets. Bull Aust Math Soc, 1992, 46: 263–269
CrossRef
Google scholar
|
[12] |
Parmenter M M. On groups with redundancy in multiplication, Ars Combin, 2002, 63: 119–127
|
[13] |
Tan Y, Zhong T. On B(5,19) non-2-groups. Comm Algebra, 2020, 48: 663–667
CrossRef
Google scholar
|
[14] |
The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.10.0. 2018
|
[15] |
Wang H, Tan Y, Moss T. On B(n,k) 2-groups. Comm Algebra, 2015, 43: 4655–4659
CrossRef
Google scholar
|
/
〈 | 〉 |