Property T and strong property T for unital *-homomorphisms

Qing MENG

PDF(328 KB)
PDF(328 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (2) : 385-398. DOI: 10.1007/s11464-020-0831-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Property T and strong property T for unital *-homomorphisms

Author information +
History +

Abstract

We introduce and study property T and strong property T for unital *-homomorphisms between two unital C*-algebras. We also consider the relations between property T and invariant subspaces for some canonical unital *-representations. As a corollary, we show that when G is a discrete group, G is nite if and only if G is amenable and the inclusion map i :Cr*(G)β(l2(G)) has property T: We also give some new equivalent forms of property T for countable discrete groups and strong property T for unital C*-algebras.

Keywords

Unital *-homomorphism, unital C*-algebra, *-bimodule, property T / strong property T

Cite this article

Download citation ▾
Qing MENG. Property T and strong property T for unital *-homomorphisms. Front. Math. China, 2020, 15(2): 385‒398 https://doi.org/10.1007/s11464-020-0831-3

References

[1]
Bédos E. Notes on hypertraces and C*-algebras. J Operator Theory, 1995, 34: 285–306
[2]
Bekka B. Property (T) for C*-algebras. Bull Lond Math Soc, 2006, 38: 857–867
CrossRef Google scholar
[3]
Bekka B, De la Harpe P, Valette A. Kazhdan's Property (T). New Math Monogr, Vol 11. Cambridge: Cambridge Univ Press, 2008
CrossRef Google scholar
[4]
Blackadar B. Operator Algebras: Theory of C*-Algebras and von Neumann Algebras. Encyclopaedia Math Sci, Vol 122. Operator Algebras and Non-Commutative Geometry III. Berlin: Springer, 2006
CrossRef Google scholar
[5]
Brown N P, Ozawa N. C*-Algebras and Finite-Dimensional Approximations. Grad Stud Math, Vol 88. Providence: Amer Math Soc, 2008
CrossRef Google scholar
[6]
Haagerup U. The standard form of von Neumann algebras. Math Scand, 1975, 37: 271–283
CrossRef Google scholar
[7]
Haagerup U. On the dual weights for crossed products of von Neumann algebras I: Removing separability conditions. Math Scand, 1978, 43: 99–118
CrossRef Google scholar
[8]
Jiang B, Ng C K.Property T of reduced C*-crossed products by discrete groups. Ann Funct Anal, 2016, 7(3): 381–385
CrossRef Google scholar
[9]
Johnson B E. Cohomology in Banach Algebras. Mem Amer Math Soc, No 127. Providence: Amer Math Soc, 1972
[10]
Jolissaint P. On property (T) for pairs of topological groups. Enseign Math, 2005, 51: 31–45
[11]
Kazhdan D. Connection of the dual space of a group with the structure of its closed subgroups. Funct Anal Appl, 1967, 1: 63–65
CrossRef Google scholar
[12]
Leung C W, Ng C K. Property (T) and strong property (T) for unital C*-algebras. J Funct Anal, 2009, 256: 3055–3070
[13]
Leung C W, Ng C K. Property T of group homomorphisms. J Math Anal Appl, 2016, 438: 759–771
CrossRef Google scholar
[14]
Li H, Ng C K. Spectral gap actions and invariant states. Int Math Res Not IMRN, 2014, 18: 4917–4931
CrossRef Google scholar
[15]
Meng Q,Ng C K. Invariant means on measure spaces and property T of C*-algebra crossed products. Rocky Mountain J Math, 2018, 48(3): 905–912
CrossRef Google scholar
[16]
Meng Q, Ng C K. A full description of property T of unital C*-crossed products. J Math Anal Appl, 2020, 483: 123637
CrossRef Google scholar
[17]
Ng C K. Property T for general C*-algebras. Math Proc Cambridge Philos Soc, 2014, 156: 229–239
CrossRef Google scholar
[18]
Wassermann S. Exact C*-Algebras and Related Topics. Lecture Notes Ser, Vol 19. GARC, Seoul National University, 1994

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(328 KB)

Accesses

Citations

Detail

Sections
Recommended

/