Property T and strong property T for unital *-homomorphisms

Qing MENG

Front. Math. China ›› 2020, Vol. 15 ›› Issue (2) : 385 -398.

PDF (328KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (2) : 385 -398. DOI: 10.1007/s11464-020-0831-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Property T and strong property T for unital *-homomorphisms

Author information +
History +
PDF (328KB)

Abstract

We introduce and study property T and strong property T for unital *-homomorphisms between two unital C*-algebras. We also consider the relations between property T and invariant subspaces for some canonical unital *-representations. As a corollary, we show that when G is a discrete group, G is nite if and only if G is amenable and the inclusion map i :Cr*(G)β(l2(G)) has property T: We also give some new equivalent forms of property T for countable discrete groups and strong property T for unital C*-algebras.

Keywords

Unital *-homomorphism, unital C*-algebra, *-bimodule, property T / strong property T

Cite this article

Download citation ▾
Qing MENG. Property T and strong property T for unital *-homomorphisms. Front. Math. China, 2020, 15(2): 385-398 DOI:10.1007/s11464-020-0831-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bédos E. Notes on hypertraces and C*-algebras. J Operator Theory, 1995, 34: 285–306

[2]

Bekka B. Property (T) for C*-algebras. Bull Lond Math Soc, 2006, 38: 857–867

[3]

Bekka B, De la Harpe P, Valette A. Kazhdan's Property (T). New Math Monogr, Vol 11. Cambridge: Cambridge Univ Press, 2008

[4]

Blackadar B. Operator Algebras: Theory of C*-Algebras and von Neumann Algebras. Encyclopaedia Math Sci, Vol 122. Operator Algebras and Non-Commutative Geometry III. Berlin: Springer, 2006

[5]

Brown N P, Ozawa N. C*-Algebras and Finite-Dimensional Approximations. Grad Stud Math, Vol 88. Providence: Amer Math Soc, 2008

[6]

Haagerup U. The standard form of von Neumann algebras. Math Scand, 1975, 37: 271–283

[7]

Haagerup U. On the dual weights for crossed products of von Neumann algebras I: Removing separability conditions. Math Scand, 1978, 43: 99–118

[8]

Jiang B, Ng C K.Property T of reduced C*-crossed products by discrete groups. Ann Funct Anal, 2016, 7(3): 381–385

[9]

Johnson B E. Cohomology in Banach Algebras. Mem Amer Math Soc, No 127. Providence: Amer Math Soc, 1972

[10]

Jolissaint P. On property (T) for pairs of topological groups. Enseign Math, 2005, 51: 31–45

[11]

Kazhdan D. Connection of the dual space of a group with the structure of its closed subgroups. Funct Anal Appl, 1967, 1: 63–65

[12]

Leung C W, Ng C K. Property (T) and strong property (T) for unital C*-algebras. J Funct Anal, 2009, 256: 3055–3070

[13]

Leung C W, Ng C K. Property T of group homomorphisms. J Math Anal Appl, 2016, 438: 759–771

[14]

Li H, Ng C K. Spectral gap actions and invariant states. Int Math Res Not IMRN, 2014, 18: 4917–4931

[15]

Meng Q,Ng C K. Invariant means on measure spaces and property T of C*-algebra crossed products. Rocky Mountain J Math, 2018, 48(3): 905–912

[16]

Meng Q, Ng C K. A full description of property T of unital C*-crossed products. J Math Anal Appl, 2020, 483: 123637

[17]

Ng C K. Property T for general C*-algebras. Math Proc Cambridge Philos Soc, 2014, 156: 229–239

[18]

Wassermann S. Exact C*-Algebras and Related Topics. Lecture Notes Ser, Vol 19. GARC, Seoul National University, 1994

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (328KB)

582

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/