Regularity results of solution uniform in time for complex Ginzburg-Landau equation

Yinnian HE

Front. Math. China ›› 2020, Vol. 15 ›› Issue (2) : 305 -315.

PDF (277KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (2) : 305 -315. DOI: 10.1007/s11464-020-0827-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Regularity results of solution uniform in time for complex Ginzburg-Landau equation

Author information +
History +
PDF (277KB)

Abstract

We provide the H2-regularity result of the solution ψ and its first- order time derivative ψt and the second-order time derivative ψtt for the complex Ginzburg-Landau equation with the Dirichlet or Neumann boundary conditions. The analysis shows that these regularity results are uniform when t tends to ∞ and 0 and are dependent of the powers of ε−1.

Keywords

Complex Ginzburg-Landau equation (CGL) / H2-regularity / sharp a prioriestimates

Cite this article

Download citation ▾
Yinnian HE. Regularity results of solution uniform in time for complex Ginzburg-Landau equation. Front. Math. China, 2020, 15(2): 305-315 DOI:10.1007/s11464-020-0827-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams R A. Sobolev Space. New York: Academic Press, 1975

[2]

Bao W Z, Tang Q L. Numerical study of quantized vortex interaction in the Ginzburg- Landau equation on bounded domains. Commun Comput Phys, 2013, 14(3): 819–850

[3]

Bao W Z, Tang Q L. Numerical study of quantized vortex interactions in the non- linear Schrödinger equation on bounded domains. Multiscale Model Simul, 2014, 12(2): 411–439

[4]

Cross C, Hohenberg C. Pattern formation outside of equilibrium. Rev Modern Phys, 1993, 65: 851–1112

[5]

Feng X B, He Y N, Liu C. Analysis of finite element approximations of a phase field model for two-phase fluids. Math Comp, 2007, 76(258): 539–571

[6]

Ginzburg L, Landau D. On the theory of superconductivity. Zh Eksp Teor Fiz, 1950, 20: 1064–1082 (in Russian); in: ter Haar D, ed. Collected Papers of L. D. Landau. Oxford: Pergamon Press, 1965, 546–568

[7]

Jiang W, Tang Q L. Numerical study of quantized vortex interaction in complex Ginzburg-Landau equation on bounded domains. Appl Math Comput, 2013, 222: 210–230

[8]

Lin F H. Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds. Comm Pure Appl Math, 1998, 51(4): 385–441

[9]

Nishiura Y. Far-from-Equilibrium Dynamics. Transl Math Monogr, Vol 209. Providence: Amer Math Soc, 2002

[10]

Okazawa N, Yokota T. Global existence and smoothing effect for the complex Ginzburg- Landau equation with p-Laplacian. J Differential Equations, 2002, 182(2): 541–576

[11]

Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Appl Math Sci, Vol 68. New York: Springer-Verlag, 1988

[12]

Yang Y S. On the Ginzburg-Landau wave equation. Bull Lond Math Soc, 1990, 22(2): 167–170

[13]

Zhang Q G, Li Y N, Su M L. The local and global existence of solutions for a time fractional complex Ginzburg-Landau equation. J Math Anal Appl, 2019, 469(1): 16–43

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (277KB)

512

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/