Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds

Yonghong HUANG, Shanzhong SUN

PDF(335 KB)
PDF(335 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (1) : 91-114. DOI: 10.1007/s11464-020-0823-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds

Author information +
History +

Abstract

We prove that there do not exist quasi-isometric embeddings of connected nonabelian nilpotent Lie groups equipped with left invariant Riemannian metrics into a metric measure space satisfying the curvaturedimension condition RCD(0;N) with N 2 R and N>1: In fact, we can prove that a sub-Riemannian manifold whose generic degree of nonholonomy is not smaller than 2 cannot be bi-Lipschitzly embedded in any Banach space with the Radon-Nikodym property. We also get that every regular sub-Riemannian manifold do not satisfy the curvature-dimension condition CD(K;N); where K;N 2 R and N>1: Along the way to the proofs, we show that the minimal weak upper gradient and the horizontal gradient coincide on the Carnot-Carathéodory spaces which may have independent interests.

Keywords

Nilpotent Lie group / curvature-dimension condition / bi-Lipschitz embedding / sub-Riemannian manifold

Cite this article

Download citation ▾
Yonghong HUANG, Shanzhong SUN. Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds. Front. Math. China, 2020, 15(1): 91‒114 https://doi.org/10.1007/s11464-020-0823-3

References

[1]
Agrachev A, Barilari D, Boscain U. Introduction to Riemannian and Sub-Riemannian Geometry.
[2]
Alexandrov A D. A theorem on triangles in a metric space and some applications. Trudy Mat Inst Steklov, 1951, 38: 5–23
[3]
Ambrosio L, Gigli N, Savare G. Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev Mat Iberoam, 2013, 29: 969–996
CrossRef Google scholar
[4]
Ambrosio L, Gigli N, Savare G. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent Math, 2014, 195: 289–391
CrossRef Google scholar
[5]
Ambrosio L, Stefani G. Heat and entropy flows in Carnot groups. arXiv: 1801.01300v3
[6]
Bellaïche A. The tangent space in sub-Riemannian geometry. In: Bellaïche A, Risler J-J, eds. Sub-Riemannian Geometry. Progr Math, Vol 144. Basel: Birkhäuser, 1996, 1–78
CrossRef Google scholar
[7]
Burago D, Burago Y, Ivanov S. A Course in Metric Geometry. Grad Stud Math, Vol 33. Providence: Amer Math Soc, 2001
CrossRef Google scholar
[8]
Cheeger J. Differentiability of Lipschitz functions on metric measure spaces. Geom Funct Anal, 1999, 9: 428–517
CrossRef Google scholar
[9]
Cheeger J, Kleiner B. On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces. In: Grffiths P A, ed. Inspired by S. S. Chern: A Memorial Volume in Honor of a Great Mathematician. Nankai Tracts Math, Vol 11. Hackensack: World Sci Publ, 2006, 129–152
CrossRef Google scholar
[10]
Chow WL.Über systeme von linearen partiellen differentialgleichungen erster ordnung. Math Ann, 1939, 117: 98–105
CrossRef Google scholar
[11]
Gelfand I M. Abstracte functionen und lineare operatoren. Mat Sb, 1938, 46(4): 235–284
[12]
Gigli N. On the Differential Structure of Metric Measure Spaces and Applications. Mem Amer Math Soc, Vol 236, No 1113. Providence: Amer Math Soc, 2015
CrossRef Google scholar
[13]
Gigli N, Mondino A, Savare G. Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows. Proc Lond Math Soc (3), 2015, 111: 1071–1129
CrossRef Google scholar
[14]
Hajŀasz P, Koskela P. Sobolev met Poincaré. Mem Amer Math Soc, Vol 145, No 688. Providence: Amer Math Soc, 2000
CrossRef Google scholar
[15]
Huang Y, Sun S. The non-existence of bi-Lipschitz embedding of sub-Riemannian manifold in Banach spaces with Radon-Nikodym property . arXiv: 1801.05626
[16]
Juillet N. Geometric inequalities and Generalized Ricci bounds in the Heisenberg groups. Int Math Res Not IMRN, 2009, 13: 2347–2373
CrossRef Google scholar
[17]
Karmanova M, Vodopyanov S. Geometry of Carnot-Carathéodory spaces, differentiability, coarea and area formulas. In: Gustafsson B, Vasil'ev A, eds. Analysis and Mathematical Physics. Trends Math. Basel: Birkhäuser, 2009, 233–335
CrossRef Google scholar
[18]
Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann of Math, 2009, 169: 903–991
CrossRef Google scholar
[19]
Mitchell J. On Carnot-Carathéodory metrics. J Differential Geom, 1985, 21: 35–45
CrossRef Google scholar
[20]
Mondino A, Naber A. Structure theory of metric measure space with lower Ricci curvature bounds. arXiv: 1405.2222v3
[21]
Oxtoby J C.Measure and Category. Grad Texts in Math, Vol 2. Berlin: Springer-Verlag, 1971
CrossRef Google scholar
[22]
Pansu P. Géométrie du groupe d'Heisenberg. Thèse, Université Paris VII, 1982
[23]
Pansu P. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann of Math, 1989, 129: 1–60
CrossRef Google scholar
[24]
Pauls S. The large scale geometry of nilpotent Lie group. Comm Anal Geom, 2001, 5(5): 951–982
CrossRef Google scholar
[25]
Rashevsky P K. Any two points of a totally nonholonomic space may be connected by an admissible line. Uch Zap Ped Inst im Liebknechta, 1938, 2: 83–84
[26]
Rong X. Selected Topics in Metric Riemannian Geometry. Lecture Notes, Fall 2012
[27]
Seo J. Bi-Lipschitz embeddability of the Grushin plane into Euclidean space. arXiv: 1011.0365v1
[28]
Sturm K T. On the geometry of metric measure spaces. I. Acta Math, 2006, 196(1): 65–131
CrossRef Google scholar
[29]
Sturm K T. On the geometry of metric measure spaces. II. Acta Math, 2006, 196(1): 133–177
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(335 KB)

Accesses

Citations

Detail

Sections
Recommended

/