Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds

Yonghong HUANG , Shanzhong SUN

Front. Math. China ›› 2020, Vol. 15 ›› Issue (1) : 91 -114.

PDF (335KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (1) : 91 -114. DOI: 10.1007/s11464-020-0823-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds

Author information +
History +
PDF (335KB)

Abstract

We prove that there do not exist quasi-isometric embeddings of connected nonabelian nilpotent Lie groups equipped with left invariant Riemannian metrics into a metric measure space satisfying the curvaturedimension condition RCD(0;N) with N 2 R and N>1: In fact, we can prove that a sub-Riemannian manifold whose generic degree of nonholonomy is not smaller than 2 cannot be bi-Lipschitzly embedded in any Banach space with the Radon-Nikodym property. We also get that every regular sub-Riemannian manifold do not satisfy the curvature-dimension condition CD(K;N); where K;N 2 R and N>1: Along the way to the proofs, we show that the minimal weak upper gradient and the horizontal gradient coincide on the Carnot-Carathéodory spaces which may have independent interests.

Keywords

Nilpotent Lie group / curvature-dimension condition / bi-Lipschitz embedding / sub-Riemannian manifold

Cite this article

Download citation ▾
Yonghong HUANG, Shanzhong SUN. Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds. Front. Math. China, 2020, 15(1): 91-114 DOI:10.1007/s11464-020-0823-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agrachev A, Barilari D, Boscain U. Introduction to Riemannian and Sub-Riemannian Geometry.

[2]

Alexandrov A D. A theorem on triangles in a metric space and some applications. Trudy Mat Inst Steklov, 1951, 38: 5–23

[3]

Ambrosio L, Gigli N, Savare G. Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev Mat Iberoam, 2013, 29: 969–996

[4]

Ambrosio L, Gigli N, Savare G. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent Math, 2014, 195: 289–391

[5]

Ambrosio L, Stefani G. Heat and entropy flows in Carnot groups. arXiv: 1801.01300v3

[6]

Bellaïche A. The tangent space in sub-Riemannian geometry. In: Bellaïche A, Risler J-J, eds. Sub-Riemannian Geometry. Progr Math, Vol 144. Basel: Birkhäuser, 1996, 1–78

[7]

Burago D, Burago Y, Ivanov S. A Course in Metric Geometry. Grad Stud Math, Vol 33. Providence: Amer Math Soc, 2001

[8]

Cheeger J. Differentiability of Lipschitz functions on metric measure spaces. Geom Funct Anal, 1999, 9: 428–517

[9]

Cheeger J, Kleiner B. On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces. In: Grffiths P A, ed. Inspired by S. S. Chern: A Memorial Volume in Honor of a Great Mathematician. Nankai Tracts Math, Vol 11. Hackensack: World Sci Publ, 2006, 129–152

[10]

Chow WL.Über systeme von linearen partiellen differentialgleichungen erster ordnung. Math Ann, 1939, 117: 98–105

[11]

Gelfand I M. Abstracte functionen und lineare operatoren. Mat Sb, 1938, 46(4): 235–284

[12]

Gigli N. On the Differential Structure of Metric Measure Spaces and Applications. Mem Amer Math Soc, Vol 236, No 1113. Providence: Amer Math Soc, 2015

[13]

Gigli N, Mondino A, Savare G. Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows. Proc Lond Math Soc (3), 2015, 111: 1071–1129

[14]

Hajŀasz P, Koskela P. Sobolev met Poincaré. Mem Amer Math Soc, Vol 145, No 688. Providence: Amer Math Soc, 2000

[15]

Huang Y, Sun S. The non-existence of bi-Lipschitz embedding of sub-Riemannian manifold in Banach spaces with Radon-Nikodym property . arXiv: 1801.05626

[16]

Juillet N. Geometric inequalities and Generalized Ricci bounds in the Heisenberg groups. Int Math Res Not IMRN, 2009, 13: 2347–2373

[17]

Karmanova M, Vodopyanov S. Geometry of Carnot-Carathéodory spaces, differentiability, coarea and area formulas. In: Gustafsson B, Vasil'ev A, eds. Analysis and Mathematical Physics. Trends Math. Basel: Birkhäuser, 2009, 233–335

[18]

Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann of Math, 2009, 169: 903–991

[19]

Mitchell J. On Carnot-Carathéodory metrics. J Differential Geom, 1985, 21: 35–45

[20]

Mondino A, Naber A. Structure theory of metric measure space with lower Ricci curvature bounds. arXiv: 1405.2222v3

[21]

Oxtoby J C.Measure and Category. Grad Texts in Math, Vol 2. Berlin: Springer-Verlag, 1971

[22]

Pansu P. Géométrie du groupe d'Heisenberg. Thèse, Université Paris VII, 1982

[23]

Pansu P. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann of Math, 1989, 129: 1–60

[24]

Pauls S. The large scale geometry of nilpotent Lie group. Comm Anal Geom, 2001, 5(5): 951–982

[25]

Rashevsky P K. Any two points of a totally nonholonomic space may be connected by an admissible line. Uch Zap Ped Inst im Liebknechta, 1938, 2: 83–84

[26]

Rong X. Selected Topics in Metric Riemannian Geometry. Lecture Notes, Fall 2012

[27]

Seo J. Bi-Lipschitz embeddability of the Grushin plane into Euclidean space. arXiv: 1011.0365v1

[28]

Sturm K T. On the geometry of metric measure spaces. I. Acta Math, 2006, 196(1): 65–131

[29]

Sturm K T. On the geometry of metric measure spaces. II. Acta Math, 2006, 196(1): 133–177

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (335KB)

1322

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/