![](/develop/static/imgs/pdf.png)
Weighted estimates for bilinear square functions with non-smooth kernels and commutators
Rui BU, Zunwei FU, Yandan ZHANG
Weighted estimates for bilinear square functions with non-smooth kernels and commutators
Under weaker conditions on the kernel functions, we discuss the boundedness of bilinear square functions associated with non-smooth kernels on the product of weighted Lebesgue spaces. Moreover, we investigate the weighted boundedness of the commutators of bilinear square functions (with symbols which are BMO functions and their weighted version, respectively) on the product of Lebesgue spaces. As an application, we deduce the corresponding boundedness of bilinear Marcinkiewicz integrals and bilinear Littlewood-Paley g-functions.
Bilinear square function / non-smooth kernel / weight / commutator / BMO function
[1] |
Bu R, Chen J C. Compactness for the commutator of multilinear singular integral operators with non-smooth kernels. Appl Math J Chinese Univ Ser B, 2019, 34: 55–75
CrossRef
Google scholar
|
[2] |
Chuong N M, Hong N T, Hung H D. Bounds of weighted multilinear Hardy-Cesàro operators in p-adic functional spaces. Front Math China, 2018, 13: 1–24
CrossRef
Google scholar
|
[3] |
Coifman R R, Meyer Y. On commutators of singular integrals and bilinear singular integrals. Trans Amer Math Soc, 1975, 212: 315–331
CrossRef
Google scholar
|
[4] |
Coifman R R, Meyer Y. Au delà des opérateurs pseudo-différentiels. Astérisque, No 57. Paris: Soc Math France, 1978
|
[5] |
Dong B H, Fu Z W, Xu J S. Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations. Sci China Math, 2018, 61: 1807–1824
CrossRef
Google scholar
|
[6] |
Duong X T, Gong R M, Grafakos L, Li J, Yan L X. Maximal operator for multilinear singular integrals with non-smooth kernels. Indiana Univ Math J, 2009, 58: 2517–2542
CrossRef
Google scholar
|
[7] |
Fabes E B, Jerison D, Kenig C. Multilinear square functions and partial differential equations. Amer J Math, 1985, 107: 1325–1368
CrossRef
Google scholar
|
[8] |
Garcia-Cuerva J. Weighted Hp Spaces. Dissertationes Math (Rozprawy Mat), 162. Warsaw: Polish Acad Sci Inst Math, 1979
|
[9] |
Grafakos L, Torres R H. Multilinear Calderón-Zygmund theory. Adv Math, 2002, 165: 124–164
CrossRef
Google scholar
|
[10] |
Grafakos L, Torres R H. Maximal operator and weighted norm inequalities for multi- linear singular integrals. Indiana Univ Math J, 2002, 51: 1261–1276
CrossRef
Google scholar
|
[11] |
Hormozi M, Si Z Y, Xue Q Y. On general multilinear square function with non-smooth kernels. Bull Math Sci, 2018, 149: 1–22
CrossRef
Google scholar
|
[12] |
Hou X M, Wu H X. Limiting weak-type behaviors for Riesz transforms and maximal operators in Bessel setting. Front Math China, 2019, 14: 535–550
CrossRef
Google scholar
|
[13] |
Hu G E. Weighted compact commutator of bilinear Fourier multiplier operator. Chin Ann Math Ser B, 2017, 38: 795–814
CrossRef
Google scholar
|
[14] |
Hu G E, Zhu Y. Weighted norm inequality with general weights for the commutator of Calderón. Acta Math Sin (Engl Ser), 2013, 29: 505–514
CrossRef
Google scholar
|
[15] |
Lerner A K. Weighted norm inequalities for the local sharp maximal function. J Fourier Anal Appl, 2004, 10: 645–674
CrossRef
Google scholar
|
[16] |
Lerner A K, Ombrosi S, Pérez C, Torres R H, Trujillo-González R. New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv Math, 2009, 220: 1222–1264
CrossRef
Google scholar
|
[17] |
Liu F, Xue Q Y. Characterizations of the multiple Littlewood-Paley operators on product domains. Publ Math Debrecen, 2018, 92: 419–439
CrossRef
Google scholar
|
[18] |
Mo H X, Wang X J, Ma R Q. Commutator of Riesz potential in p-adic generalized Morrey spaces. Front Math China, 2018, 13: 633–645
CrossRef
Google scholar
|
[19] |
Pérez C, Pradolini G, Torres R H, Trujillo-González R. End-points estimates for iterated commutators of multilinear singular integrals. Bull Lond Math Soc, 2014, 46: 26–42
CrossRef
Google scholar
|
[20] |
Rao M M, Ren Z D. Theory of Orlicz Space. New York: Marcel Dekker, 1991
|
[21] |
Sato S, Yabuta K. Multilinearized Littlewood-Paley operators. Sci Math Jpn, 2002, 55: 447–453
|
[22] |
Strömberg J O. Bounded mean oscillation with Orlicz norm and duality of Hardy spaces. Indiana Univ Math J, 1979, 28: 511–544
CrossRef
Google scholar
|
[23] |
Xue Q Y, Yan J Q. On multilinear square function and its applications to multilinear Littlewood-Paley operators with non-convolution type kernels. J Math Anal Appl, 2015, 422: 1342–1362
CrossRef
Google scholar
|
/
〈 |
|
〉 |