Weighted estimates for bilinear square functions with non-smooth kernels and commutators

Rui BU, Zunwei FU, Yandan ZHANG

PDF(338 KB)
PDF(338 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (1) : 1-20. DOI: 10.1007/s11464-020-0822-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Weighted estimates for bilinear square functions with non-smooth kernels and commutators

Author information +
History +

Abstract

Under weaker conditions on the kernel functions, we discuss the boundedness of bilinear square functions associated with non-smooth kernels on the product of weighted Lebesgue spaces. Moreover, we investigate the weighted boundedness of the commutators of bilinear square functions (with symbols which are BMO functions and their weighted version, respectively) on the product of Lebesgue spaces. As an application, we deduce the corresponding boundedness of bilinear Marcinkiewicz integrals and bilinear Littlewood-Paley g-functions.

Keywords

Bilinear square function / non-smooth kernel / weight / commutator / BMO function

Cite this article

Download citation ▾
Rui BU, Zunwei FU, Yandan ZHANG. Weighted estimates for bilinear square functions with non-smooth kernels and commutators. Front. Math. China, 2020, 15(1): 1‒20 https://doi.org/10.1007/s11464-020-0822-4

References

[1]
Bu R, Chen J C. Compactness for the commutator of multilinear singular integral operators with non-smooth kernels. Appl Math J Chinese Univ Ser B, 2019, 34: 55–75
CrossRef Google scholar
[2]
Chuong N M, Hong N T, Hung H D. Bounds of weighted multilinear Hardy-Cesàro operators in p-adic functional spaces. Front Math China, 2018, 13: 1–24
CrossRef Google scholar
[3]
Coifman R R, Meyer Y. On commutators of singular integrals and bilinear singular integrals. Trans Amer Math Soc, 1975, 212: 315–331
CrossRef Google scholar
[4]
Coifman R R, Meyer Y. Au delà des opérateurs pseudo-différentiels. Astérisque, No 57. Paris: Soc Math France, 1978
[5]
Dong B H, Fu Z W, Xu J S. Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations. Sci China Math, 2018, 61: 1807–1824
CrossRef Google scholar
[6]
Duong X T, Gong R M, Grafakos L, Li J, Yan L X. Maximal operator for multilinear singular integrals with non-smooth kernels. Indiana Univ Math J, 2009, 58: 2517–2542
CrossRef Google scholar
[7]
Fabes E B, Jerison D, Kenig C. Multilinear square functions and partial differential equations. Amer J Math, 1985, 107: 1325–1368
CrossRef Google scholar
[8]
Garcia-Cuerva J. Weighted Hp Spaces. Dissertationes Math (Rozprawy Mat), 162. Warsaw: Polish Acad Sci Inst Math, 1979
[9]
Grafakos L, Torres R H. Multilinear Calderón-Zygmund theory. Adv Math, 2002, 165: 124–164
CrossRef Google scholar
[10]
Grafakos L, Torres R H. Maximal operator and weighted norm inequalities for multi- linear singular integrals. Indiana Univ Math J, 2002, 51: 1261–1276
CrossRef Google scholar
[11]
Hormozi M, Si Z Y, Xue Q Y. On general multilinear square function with non-smooth kernels. Bull Math Sci, 2018, 149: 1–22
CrossRef Google scholar
[12]
Hou X M, Wu H X. Limiting weak-type behaviors for Riesz transforms and maximal operators in Bessel setting. Front Math China, 2019, 14: 535–550
CrossRef Google scholar
[13]
Hu G E. Weighted compact commutator of bilinear Fourier multiplier operator. Chin Ann Math Ser B, 2017, 38: 795–814
CrossRef Google scholar
[14]
Hu G E, Zhu Y. Weighted norm inequality with general weights for the commutator of Calderón. Acta Math Sin (Engl Ser), 2013, 29: 505–514
CrossRef Google scholar
[15]
Lerner A K. Weighted norm inequalities for the local sharp maximal function. J Fourier Anal Appl, 2004, 10: 645–674
CrossRef Google scholar
[16]
Lerner A K, Ombrosi S, Pérez C, Torres R H, Trujillo-González R. New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv Math, 2009, 220: 1222–1264
CrossRef Google scholar
[17]
Liu F, Xue Q Y. Characterizations of the multiple Littlewood-Paley operators on product domains. Publ Math Debrecen, 2018, 92: 419–439
CrossRef Google scholar
[18]
Mo H X, Wang X J, Ma R Q. Commutator of Riesz potential in p-adic generalized Morrey spaces. Front Math China, 2018, 13: 633–645
CrossRef Google scholar
[19]
Pérez C, Pradolini G, Torres R H, Trujillo-González R. End-points estimates for iterated commutators of multilinear singular integrals. Bull Lond Math Soc, 2014, 46: 26–42
CrossRef Google scholar
[20]
Rao M M, Ren Z D. Theory of Orlicz Space. New York: Marcel Dekker, 1991
[21]
Sato S, Yabuta K. Multilinearized Littlewood-Paley operators. Sci Math Jpn, 2002, 55: 447–453
[22]
Strömberg J O. Bounded mean oscillation with Orlicz norm and duality of Hardy spaces. Indiana Univ Math J, 1979, 28: 511–544
CrossRef Google scholar
[23]
Xue Q Y, Yan J Q. On multilinear square function and its applications to multilinear Littlewood-Paley operators with non-convolution type kernels. J Math Anal Appl, 2015, 422: 1342–1362
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(338 KB)

Accesses

Citations

Detail

Sections
Recommended

/