Non-naturally reductive Einstein metrics on Sp(n)
Zhiqi CHEN, Huibin CHEN
Non-naturally reductive Einstein metrics on Sp(n)
We prove that Sp(2k+l) admits at least two non-naturally reductive Einstein metrics which are Ad(Sp(k)×Sp(k)×Sp(l))-invariant if k<l.It implies that every compact simple Lie group Sp(n) for n≥4 admits at least 2[(n−1)/3] non-naturally reductive left-invariant Einstein metrics.
Einstein metric / non-naturally reductive metric / Riemannian manifold / Lie group
[1] |
Arvanitoyeorgos A, Mori K, Sakane Y. Einstein metrics on compact Lie groups which are not naturally reductive. Geom Dedicata, 2012, 160(1): 261–285
CrossRef
Google scholar
|
[2] |
Arvanitoyeorgos A, Sakane Y, Statha M. Einstein metrics on the symplectic group which are not naturally reductive. In: Adachi T, Hashimoto H, Hristov M J, eds. Current Developments in Differential Geometry and its Related Fields. Singapore: World Scientific, 2016, 1–21
CrossRef
Google scholar
|
[3] |
Besse A L. Einstein Manifolds. Berlin: Springer-Verlag, 1986
CrossRef
Google scholar
|
[4] |
Chen H, Chen Z, Deng S. Non-naturally reductive Einstein metrics on SO(n).Manuscripta Math, 2018, 156(1-2): 127–136
CrossRef
Google scholar
|
[5] |
Chen Z, Kang Y, Liang K. Invariant Einstein metrics on three-locally-symmetric spaces. Comm Anal Geom, 2016, 24(4): 769–792
CrossRef
Google scholar
|
[6] |
Chen Z, Liang K. Non-naturally reductive Einstein metrics on the compact simple Lie group F4.Ann Global Anal Geom, 2014, 46: 103–115
CrossRef
Google scholar
|
[7] |
Chrysikos I, Sakane Y. Non-naturally reductive Einstein metrics on exceptional Lie groups. J Geom Phys, 2017, 116: 152–186
CrossRef
Google scholar
|
[8] |
D’Atri J E, Ziller W. Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups. Mem Amer Math Soc, Vol 18, No 215. Providence: Amer Math Soc, 1979
CrossRef
Google scholar
|
[9] |
Jensen G. Einstein metrics on principle fiber bundles. J Differential Geom, 1973, 8: 599–614
CrossRef
Google scholar
|
[10] |
Mori K. Left Invariant Einstein Metrics on SU(n) that are not Naturally Reductive. Master Thesis, Osaka University, 1994 (in Japanese); Osaka University RPM 96010 (Preprint Ser), 1996
|
[11] |
Nikonorov Yu G. On a class of homogeneous compact Einstein manifolds. Sib Math J, 2000, 41: 168–172
CrossRef
Google scholar
|
[12] |
Nikonorov Yu G. Classification of generalized Wallach spaces. Geom Dedicata, 2016, 181: 193–212
CrossRef
Google scholar
|
[13] |
Park J S, Sakane Y. Invariant Einstein metrics on certain homogeneous spaces. Tokyo J Math, 1997, 20(1): 51–61
CrossRef
Google scholar
|
[14] |
Wang M, Ziller W. Existence and non-existence of homogeneous Einstein metrics. Invent Math, 1986, 84: 177–194
CrossRef
Google scholar
|
[15] |
Yan Z, Deng S. Einstein metrics on compact simple Lie groups attached to standard triples. Trans Amer Math Soc, 2017, 369(12): 8587–8605
CrossRef
Google scholar
|
/
〈 | 〉 |