Non-naturally reductive Einstein metrics on Sp(n)

Zhiqi CHEN, Huibin CHEN

PDF(264 KB)
PDF(264 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (1) : 47-55. DOI: 10.1007/s11464-020-0818-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Non-naturally reductive Einstein metrics on Sp(n)

Author information +
History +

Abstract

We prove that Sp(2k+l) admits at least two non-naturally reductive Einstein metrics which are Ad(Sp(k)×Sp(k)×Sp(l))-invariant if k<l.It implies that every compact simple Lie group Sp(n) for n≥4 admits at least 2[(n1)/3] non-naturally reductive left-invariant Einstein metrics.

Keywords

Einstein metric / non-naturally reductive metric / Riemannian manifold / Lie group

Cite this article

Download citation ▾
Zhiqi CHEN, Huibin CHEN. Non-naturally reductive Einstein metrics on Sp(n). Front. Math. China, 2020, 15(1): 47‒55 https://doi.org/10.1007/s11464-020-0818-0

References

[1]
Arvanitoyeorgos A, Mori K, Sakane Y. Einstein metrics on compact Lie groups which are not naturally reductive. Geom Dedicata, 2012, 160(1): 261–285
CrossRef Google scholar
[2]
Arvanitoyeorgos A, Sakane Y, Statha M. Einstein metrics on the symplectic group which are not naturally reductive. In: Adachi T, Hashimoto H, Hristov M J, eds. Current Developments in Differential Geometry and its Related Fields. Singapore: World Scientific, 2016, 1–21
CrossRef Google scholar
[3]
Besse A L. Einstein Manifolds. Berlin: Springer-Verlag, 1986
CrossRef Google scholar
[4]
Chen H, Chen Z, Deng S. Non-naturally reductive Einstein metrics on SO(n).Manuscripta Math, 2018, 156(1-2): 127–136
CrossRef Google scholar
[5]
Chen Z, Kang Y, Liang K. Invariant Einstein metrics on three-locally-symmetric spaces. Comm Anal Geom, 2016, 24(4): 769–792
CrossRef Google scholar
[6]
Chen Z, Liang K. Non-naturally reductive Einstein metrics on the compact simple Lie group F4.Ann Global Anal Geom, 2014, 46: 103–115
CrossRef Google scholar
[7]
Chrysikos I, Sakane Y. Non-naturally reductive Einstein metrics on exceptional Lie groups. J Geom Phys, 2017, 116: 152–186
CrossRef Google scholar
[8]
D’Atri J E, Ziller W. Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups. Mem Amer Math Soc, Vol 18, No 215. Providence: Amer Math Soc, 1979
CrossRef Google scholar
[9]
Jensen G. Einstein metrics on principle fiber bundles. J Differential Geom, 1973, 8: 599–614
CrossRef Google scholar
[10]
Mori K. Left Invariant Einstein Metrics on SU(n) that are not Naturally Reductive. Master Thesis, Osaka University, 1994 (in Japanese); Osaka University RPM 96010 (Preprint Ser), 1996
[11]
Nikonorov Yu G. On a class of homogeneous compact Einstein manifolds. Sib Math J, 2000, 41: 168–172
CrossRef Google scholar
[12]
Nikonorov Yu G. Classification of generalized Wallach spaces. Geom Dedicata, 2016, 181: 193–212
CrossRef Google scholar
[13]
Park J S, Sakane Y. Invariant Einstein metrics on certain homogeneous spaces. Tokyo J Math, 1997, 20(1): 51–61
CrossRef Google scholar
[14]
Wang M, Ziller W. Existence and non-existence of homogeneous Einstein metrics. Invent Math, 1986, 84: 177–194
CrossRef Google scholar
[15]
Yan Z, Deng S. Einstein metrics on compact simple Lie groups attached to standard triples. Trans Amer Math Soc, 2017, 369(12): 8587–8605
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Natu
AI Summary AI Mindmap
PDF(264 KB)

Accesses

Citations

Detail

Sections
Recommended

/