Equivalence of operator norm for Hardy-Littlewood maximal operators and their truncated operators on Morrey spaces

Xingsong ZHANG, Mingquan WEI, Dunyan YAN, Qianjun HE

PDF(262 KB)
PDF(262 KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (1) : 215-223. DOI: 10.1007/s11464-020-0812-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Equivalence of operator norm for Hardy-Littlewood maximal operators and their truncated operators on Morrey spaces

Author information +
History +

Abstract

We will prove that for 1<p< and 0<λ<n, the central Morrey norm of the truncated centered Hardy-Littlewood maximal operator Mγc equals that of the centered Hardy-Littlewood maximal operator for all 0<γ<+. When p = 1 and 0<λ<n, it turns out that the weak central Morrey norm of the truncated centered Hardy-Littlewood maximal operator Mγc equals that of the centered Hardy-Littlewood maximal operator for all 0<γ<+. Moreover, the same results are true for the truncated uncentered Hardy-Littlewood maximal operator. Our work extends the previous results of Lebesgue spaces to Morrey spaces.

Keywords

Hardy-Littlewood maximal function / truncated Hardy-Littlewood maximal function / Morrey norms / weak Morrey norms

Cite this article

Download citation ▾
Xingsong ZHANG, Mingquan WEI, Dunyan YAN, Qianjun HE. Equivalence of operator norm for Hardy-Littlewood maximal operators and their truncated operators on Morrey spaces. Front. Math. China, 2020, 15(1): 215‒223 https://doi.org/10.1007/s11464-020-0812-6

References

[1]
Alvarez J, Lakey J, Guzmán-Partida M. Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures. Collect Math, 2000, 50(1): 1–47
[2]
Chiarenza F, Frasca M. Morrey spaces and Hardy-Littlewood maximal function. Rend Mat Appl (7), 1987, 7(3-4): 273–279
[3]
Christ M, Grafakos L. Best constants for two nonconvolution inequalities. Proc Amer Math Soc, 1995, 123(6): 1687–1693
CrossRef Google scholar
[4]
Duoandikoetxea J. Fourier Analysis. Grad Stud Math, Vol 29. Providence: Amer Math Soc, 2001
[5]
Grafakos L. Classical Fourier Analysis. 3rd ed. Grad Texts in Math, Vol 249. New York: Springer, 2014
CrossRef Google scholar
[6]
Lu S Z, Yan D Y. Lp-boundedness of multilinear oscillatory singular integrals with Calderón-Zygmund kernel. Sci China Ser A, 2002, 45(2): 196–213
[7]
Morrey C B Jr. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc, 1938, 43(1): 126–166
CrossRef Google scholar
[8]
Peetre J. On the theory of Lp,λ spaces. J Funct Anal, 1969, 4: 71–87
CrossRef Google scholar
[9]
Shi Z S H, Yan D Y. Criterion on Lp1×Lp2→Lq-boundedness for oscillatory bilinear Hilbert transform. Abstr Appl Anal, 2014, Art. ID 712051 (11 pp)
CrossRef Google scholar
[10]
Tang L. Endpoint estimates for multilinear fractional integrals. J Aust Math Soc, 2008, 84(3): 419–429
CrossRef Google scholar
[11]
Wei M Q, Nie X D, Wu D, Yan D Y. A note on Hardy-Littlewood maximal operators. J Inequal Appl, 2016, Paper No 21 (13 pp)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(262 KB)

Accesses

Citations

Detail

Sections
Recommended

/