Nash inequality for diffusion processes associated with Dirichlet distributions
Feng-Yu WANG, Weiwei ZHANG
Nash inequality for diffusion processes associated with Dirichlet distributions
For any and , let be the Dirichlet distribution with parameter α on the set . The multivariate Dirichlet diffusion is associated with the Dirichlet form
with Domain being the closure of . We prove the Nash inequality
for some constant and , where the constant p is sharp when and . This Nash inequality also holds for the corresponding Fleming-Viot process.
Dirichlet distribution / Nash inequality / super Poincaré inequality / diffusion process
[1] |
Bakosi J, Ristorcelli J R. A stochastic diffusion process for the Dirichlet distribution. Int J Stoch Anal, 2013, Article ID: 842981 (7 pp)
CrossRef
Google scholar
|
[2] |
Bakry D, Gentil I, Ledoux M. Analysis and Geometry of Markov Diffusion Operators. Berlin: Springer, 2014
CrossRef
Google scholar
|
[3] |
Connor R J, Mosimann J E. Concepts of independence for proportions with a generalization of the Dirichlet distribution. J. Amer Statist Assoc, 1969, 64: 194–206
CrossRef
Google scholar
|
[4] |
Davies E B, Simon B. Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J Funct Anal, 1984, 59: 335–395
CrossRef
Google scholar
|
[5] |
Epstein C L, Mazzeo R. Wright-Fisher diffusion in one dimension. SIAM J Math Anal, 2010, 42: 568–608
CrossRef
Google scholar
|
[6] |
Feng S, Miclo L. Wang F-Y. Poincare inequality for Dirichlet distributions and infinite- dimensional generalizations. ALEA Lat Am J Probab Math Stat, 2017, 14: 361–380
|
[7] |
Feng S, Wang F-Y. A class of infinite-dimensional diffusion processes with connection to population genetics. J Appl Probab, 2007, 44: 938–949
CrossRef
Google scholar
|
[8] |
Feng S, Wang F-Y. Harnack inequality and applications for infinite-dimensional GEM processes. Potential Anal, 2016, 44: 137–153
CrossRef
Google scholar
|
[9] |
Gross L. Logarithmic Sobolev inequalities and contractivity properties of semigroups. In: Dell’Antonio G, Mosco U, eds. Dirichlet Forms. Lecture Notes in Math, Vol 1563. Berlin: Springer, 1993, 54–88
CrossRef
Google scholar
|
[10] |
Jacobsen M. Examples of multivariate diffusions: time-reversibility; a Cox-Ingersoll- Ross type process. Department of Theoretical Statistics, Univ of Copenhagen, 2001, Preprint
|
[11] |
Johnson N. L. An approximation to the multinomial distribution, some properties and applications. Biometrika, 1960, 47: 93–102
CrossRef
Google scholar
|
[12] |
Miclo L. About projections of logarithmic Sobolev inequalities. In: Azéma J, Émery M, Ledoux M, Yor M, eds. Séminaire de Probabilités XXXVI. Lecture Notes in Math, Vol 1801. Berlin: Springer, 2003, 201–221
CrossRef
Google scholar
|
[13] |
Miclo L. Sur l’inégalité de Sobolev logarithmique des opérateurs de Laguerre à petit paramètre. In: Azéma J, Émery M, Ledoux M, Yor M, eds. Séminaire de Probabilités XXXVI. Lecture Notes in Math, Vol 1801. Berlin: Springer, 2003, 222–229
CrossRef
Google scholar
|
[14] |
Mosimann J E. On the compound multinomial distribution, the multivariate- distribution, and correlations among proportions. Biometrika, 1962, 49: 65–82
CrossRef
Google scholar
|
[15] |
Shimakura N. Equations différentielles provenant de la génetique des populations. Tôhoka Math J, 1977, 29: 287–318
CrossRef
Google scholar
|
[16] |
Stannat W. On validity of the log-Sobolev inequality for symmetric Fleming-Viot operators. Ann Probab, 2000, 28: 667–684
CrossRef
Google scholar
|
[17] |
Wang F-Y. Functional inequalities for empty essential spectrum. J Funct Anal, 2000, 170: 219–245
CrossRef
Google scholar
|
[18] |
Wang F-Y. Functional inequalities, semigroup properties and spectrum estimates. Infin Dimens Anal Quantum Probab Relat Top, 2000, 3: 263–295
CrossRef
Google scholar
|
[19] |
Wang F-Y. Functional Inequalities, Markov Semigroups and Spectral Theory. Beijing: Science Press, 2005
|
/
〈 | 〉 |