Nash inequality for diffusion processes associated with Dirichlet distributions

Feng-Yu WANG, Weiwei ZHANG

PDF(355 KB)
PDF(355 KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (6) : 1317-1338. DOI: 10.1007/s11464-019-0807-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Nash inequality for diffusion processes associated with Dirichlet distributions

Author information +
History +

Abstract

For any N 2 and α=(α1,...,αN+1)(0,)N+1, let μα(N) be the Dirichlet distribution with parameter α on the set Δ(N):={x[0,1]N:1iNxi1}. The multivariate Dirichlet diffusion is associated with the Dirichlet form

Eα(N)(f,f):=n=1NΔ(N)(11iNxi)xn(nf)2(x)μα(N)(dx)

with Domain D(Eα(N)) being the closure of C1(Δ(N)). We prove the Nash inequality

μα(N)(f2)CEα(N)(f,f)p/(p+1)μα(N)(|f|)2/(p+1),fD(Eα(N)),μα(N)(f)=0,

for some constant C>0 and p=(αN+11)++i=1N1(2αi), where the constant p is sharp when max1iNαi1/2 and αN+11. This Nash inequality also holds for the corresponding Fleming-Viot process.

Keywords

Dirichlet distribution / Nash inequality / super Poincaré inequality / diffusion process

Cite this article

Download citation ▾
Feng-Yu WANG, Weiwei ZHANG. Nash inequality for diffusion processes associated with Dirichlet distributions. Front. Math. China, 2019, 14(6): 1317‒1338 https://doi.org/10.1007/s11464-019-0807-3

References

[1]
Bakosi J, Ristorcelli J R. A stochastic diffusion process for the Dirichlet distribution. Int J Stoch Anal, 2013, Article ID: 842981 (7 pp)
CrossRef Google scholar
[2]
Bakry D, Gentil I, Ledoux M. Analysis and Geometry of Markov Diffusion Operators. Berlin: Springer, 2014
CrossRef Google scholar
[3]
Connor R J, Mosimann J E. Concepts of independence for proportions with a generalization of the Dirichlet distribution. J. Amer Statist Assoc, 1969, 64: 194–206
CrossRef Google scholar
[4]
Davies E B, Simon B. Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J Funct Anal, 1984, 59: 335–395
CrossRef Google scholar
[5]
Epstein C L, Mazzeo R. Wright-Fisher diffusion in one dimension. SIAM J Math Anal, 2010, 42: 568–608
CrossRef Google scholar
[6]
Feng S, Miclo L. Wang F-Y. Poincare inequality for Dirichlet distributions and infinite- dimensional generalizations. ALEA Lat Am J Probab Math Stat, 2017, 14: 361–380
[7]
Feng S, Wang F-Y. A class of infinite-dimensional diffusion processes with connection to population genetics. J Appl Probab, 2007, 44: 938–949
CrossRef Google scholar
[8]
Feng S, Wang F-Y. Harnack inequality and applications for infinite-dimensional GEM processes. Potential Anal, 2016, 44: 137–153
CrossRef Google scholar
[9]
Gross L. Logarithmic Sobolev inequalities and contractivity properties of semigroups. In: Dell’Antonio G, Mosco U, eds. Dirichlet Forms. Lecture Notes in Math, Vol 1563. Berlin: Springer, 1993, 54–88
CrossRef Google scholar
[10]
Jacobsen M. Examples of multivariate diffusions: time-reversibility; a Cox-Ingersoll- Ross type process. Department of Theoretical Statistics, Univ of Copenhagen, 2001, Preprint
[11]
Johnson N. L. An approximation to the multinomial distribution, some properties and applications. Biometrika, 1960, 47: 93–102
CrossRef Google scholar
[12]
Miclo L. About projections of logarithmic Sobolev inequalities. In: Azéma J, Émery M, Ledoux M, Yor M, eds. Séminaire de Probabilités XXXVI. Lecture Notes in Math, Vol 1801. Berlin: Springer, 2003, 201–221
CrossRef Google scholar
[13]
Miclo L. Sur l’inégalité de Sobolev logarithmique des opérateurs de Laguerre à petit paramètre. In: Azéma J, Émery M, Ledoux M, Yor M, eds. Séminaire de Probabilités XXXVI. Lecture Notes in Math, Vol 1801. Berlin: Springer, 2003, 222–229
CrossRef Google scholar
[14]
Mosimann J E. On the compound multinomial distribution, the multivariate- distribution, and correlations among proportions. Biometrika, 1962, 49: 65–82
CrossRef Google scholar
[15]
Shimakura N. Equations différentielles provenant de la génetique des populations. Tôhoka Math J, 1977, 29: 287–318
CrossRef Google scholar
[16]
Stannat W. On validity of the log-Sobolev inequality for symmetric Fleming-Viot operators. Ann Probab, 2000, 28: 667–684
CrossRef Google scholar
[17]
Wang F-Y. Functional inequalities for empty essential spectrum. J Funct Anal, 2000, 170: 219–245
CrossRef Google scholar
[18]
Wang F-Y. Functional inequalities, semigroup properties and spectrum estimates. Infin Dimens Anal Quantum Probab Relat Top, 2000, 3: 263–295
CrossRef Google scholar
[19]
Wang F-Y. Functional Inequalities, Markov Semigroups and Spectral Theory. Beijing: Science Press, 2005

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(355 KB)

Accesses

Citations

Detail

Sections
Recommended

/