Arithmetic progressions in self-similar sets

Lifeng XI, Kan JIANG, Qiyang PEI

PDF(272 KB)
PDF(272 KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (5) : 957-966. DOI: 10.1007/s11464-019-0788-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Arithmetic progressions in self-similar sets

Author information +
History +

Abstract

Given a sequence {bi}i=1n and a ratio λ(0,1), let E=i=1n(λE+bi) be a homogeneous self-similar set. In this paper, we study the existence and maximal length of arithmetic progressions in E: Our main idea is from the multiple β-expansions.

Keywords

Self-similar sets / arithmetic progression (AP) / β-expansions

Cite this article

Download citation ▾
Lifeng XI, Kan JIANG, Qiyang PEI. Arithmetic progressions in self-similar sets. Front. Math. China, 2019, 14(5): 957‒966 https://doi.org/10.1007/s11464-019-0788-2

References

[1]
Akiyama S, Komornik V. Discrete spectra and Pisot numbers. J Number Theory, 2013, 133(2): 375–390
CrossRef Google scholar
[2]
Broderick R, Fishman L, Simmons D. Quantitative results using variants of Schmidt's game: dimension bounds, arithmetic progressions, and more. Acta Arith, 2019, 188(3): 289–316
CrossRef Google scholar
[3]
Chaika J. Arithmetic progressions in middle-nth Cantor sets. arXiv: 1703.08998
[4]
Dajani K, de Vries M. Invariant densities for random β-expansions. J Eur Math Soc (JEMS), 2019, 9(1): 157–176
CrossRef Google scholar
[5]
Dajani K, Jiang K, Kong D, Li W. Multiple codings for self-similar sets with overlaps. arXiv: 1603.09304
[6]
Dajani K, Jiang K, Kong D, Li W. Multiple expansions of real numbers with digits set {0,1,q}. Math Z, 2019, 291(3-4): 1605–1619
CrossRef Google scholar
[7]
Dajani K, Kraaikamp C, van der Wekken N. Ergodicity of N-continued fraction expansions. J Number Theory, 2013, 133(9): 3183–3204
CrossRef Google scholar
[8]
De Vries M, Komornik V. Unique expansions of real numbers. Adv Math, 2009, 221(2): 390–427
CrossRef Google scholar
[9]
Erdös P, Turán P. On some sequences of integers. J Lond Math Soc, 1936, 11(4): 261–264
CrossRef Google scholar
[10]
Falconer K. Fractal Geometry: Mathematical Foundations and Applications. Chichester: John Wiley & Sons, Ltd, 1990
CrossRef Google scholar
[11]
Fraser J M, Yu H. Arithmetic patches, weak tangents, and dimension. Bull Lond Math Soc, 2018, 50(1): 85–95
CrossRef Google scholar
[12]
Furstenberg H, Katznelson Y, Ornstein D. The ergodic theoretical proof of Szemerédi's theorem. Bull Amer Math Soc (N S), 1982, 7(3): 527–552
CrossRef Google scholar
[13]
Glendinning P, Sidorov N. Unique representations of real numbers in non-integer bases. Math Res Lett, 2001, 8(4): 535–543
CrossRef Google scholar
[14]
Green B, Tao T. The primes contain arbitrarily long arithmetic progressions. Ann of Math (2), 2008, 167(2): 481–547
CrossRef Google scholar
[15]
Hutchinson J E. Fractals and self-similarity. Indiana Univ Math J, 1981, 30(5): 713–747
CrossRef Google scholar
[16]
Komornik V, Kong D, Li W. Hausdorff dimension of univoque sets and Devil's staircase. Adv Math, 2017, 305:165–196
CrossRef Google scholar
[17]
Laba I, Pramanik M. Arithmetic progressions in sets of fractional dimension. Geom Funct Anal, 2009, 19(2): 429–456
CrossRef Google scholar
[18]
Li J, Wu M, Xiong Y. On Assouad dimension and arithmetic progressions in sets defined by digit restrictions. J Fourier Anal Appl, 2019, 25(4): 1782–1794
CrossRef Google scholar
[19]
Roth K F. On certain sets of integers. J Lond Math Soc, 1953, 28: 104–109
CrossRef Google scholar
[20]
Shmerkin P. Salem sets with no arithmetic progressions. Int Math Res Not IMRN, 2017, (7): 1929–1941
CrossRef Google scholar
[21]
Sidorov N. Expansions in non-integer bases: lower, middle and top orders. J Number Theory, 2009, 129(4): 741–754
CrossRef Google scholar
[22]
Szemerédi E. On sets of integers containing no four elements in arithmetic progression. Acta Math Hungar, 1969, 20: 89–104
CrossRef Google scholar
[23]
Szemerédi E. On sets of integers containing no k elements in arithmetic progression. Acta Arith, 1975, 27: 199–245
CrossRef Google scholar
[24]
Tao T. What is good mathematics? Bull Amer Math Soc (N S), 2007, 44(4): 623–634
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(272 KB)

Accesses

Citations

Detail

Sections
Recommended

/