Arithmetic progressions in self-similar sets
Lifeng XI, Kan JIANG, Qiyang PEI
Arithmetic progressions in self-similar sets
Given a sequence and a ratio , let be a homogeneous self-similar set. In this paper, we study the existence and maximal length of arithmetic progressions in E: Our main idea is from the multiple β-expansions.
Self-similar sets / arithmetic progression (AP) / β-expansions
[1] |
Akiyama S, Komornik V. Discrete spectra and Pisot numbers. J Number Theory, 2013, 133(2): 375–390
CrossRef
Google scholar
|
[2] |
Broderick R, Fishman L, Simmons D. Quantitative results using variants of Schmidt's game: dimension bounds, arithmetic progressions, and more. Acta Arith, 2019, 188(3): 289–316
CrossRef
Google scholar
|
[3] |
Chaika J. Arithmetic progressions in middle-nth Cantor sets. arXiv: 1703.08998
|
[4] |
Dajani K, de Vries M. Invariant densities for random β-expansions. J Eur Math Soc (JEMS), 2019, 9(1): 157–176
CrossRef
Google scholar
|
[5] |
Dajani K, Jiang K, Kong D, Li W. Multiple codings for self-similar sets with overlaps. arXiv: 1603.09304
|
[6] |
Dajani K, Jiang K, Kong D, Li W. Multiple expansions of real numbers with digits set {0,1,q}. Math Z, 2019, 291(3-4): 1605–1619
CrossRef
Google scholar
|
[7] |
Dajani K, Kraaikamp C, van der Wekken N. Ergodicity of N-continued fraction expansions. J Number Theory, 2013, 133(9): 3183–3204
CrossRef
Google scholar
|
[8] |
De Vries M, Komornik V. Unique expansions of real numbers. Adv Math, 2009, 221(2): 390–427
CrossRef
Google scholar
|
[9] |
Erdös P, Turán P. On some sequences of integers. J Lond Math Soc, 1936, 11(4): 261–264
CrossRef
Google scholar
|
[10] |
Falconer K. Fractal Geometry: Mathematical Foundations and Applications. Chichester: John Wiley & Sons, Ltd, 1990
CrossRef
Google scholar
|
[11] |
Fraser J M, Yu H. Arithmetic patches, weak tangents, and dimension. Bull Lond Math Soc, 2018, 50(1): 85–95
CrossRef
Google scholar
|
[12] |
Furstenberg H, Katznelson Y, Ornstein D. The ergodic theoretical proof of Szemerédi's theorem. Bull Amer Math Soc (N S), 1982, 7(3): 527–552
CrossRef
Google scholar
|
[13] |
Glendinning P, Sidorov N. Unique representations of real numbers in non-integer bases. Math Res Lett, 2001, 8(4): 535–543
CrossRef
Google scholar
|
[14] |
Green B, Tao T. The primes contain arbitrarily long arithmetic progressions. Ann of Math (2), 2008, 167(2): 481–547
CrossRef
Google scholar
|
[15] |
Hutchinson J E. Fractals and self-similarity. Indiana Univ Math J, 1981, 30(5): 713–747
CrossRef
Google scholar
|
[16] |
Komornik V, Kong D, Li W. Hausdorff dimension of univoque sets and Devil's staircase. Adv Math, 2017, 305:165–196
CrossRef
Google scholar
|
[17] |
Laba I, Pramanik M. Arithmetic progressions in sets of fractional dimension. Geom Funct Anal, 2009, 19(2): 429–456
CrossRef
Google scholar
|
[18] |
Li J, Wu M, Xiong Y. On Assouad dimension and arithmetic progressions in sets defined by digit restrictions. J Fourier Anal Appl, 2019, 25(4): 1782–1794
CrossRef
Google scholar
|
[19] |
Roth K F. On certain sets of integers. J Lond Math Soc, 1953, 28: 104–109
CrossRef
Google scholar
|
[20] |
Shmerkin P. Salem sets with no arithmetic progressions. Int Math Res Not IMRN, 2017, (7): 1929–1941
CrossRef
Google scholar
|
[21] |
Sidorov N. Expansions in non-integer bases: lower, middle and top orders. J Number Theory, 2009, 129(4): 741–754
CrossRef
Google scholar
|
[22] |
Szemerédi E. On sets of integers containing no four elements in arithmetic progression. Acta Math Hungar, 1969, 20: 89–104
CrossRef
Google scholar
|
[23] |
Szemerédi E. On sets of integers containing no k elements in arithmetic progression. Acta Arith, 1975, 27: 199–245
CrossRef
Google scholar
|
[24] |
Tao T. What is good mathematics? Bull Amer Math Soc (N S), 2007, 44(4): 623–634
CrossRef
Google scholar
|
/
〈 | 〉 |