Number of fixed points for unitary Tn−1-manifold
Shiyun WEN , Jun MA
Front. Math. China ›› 2019, Vol. 14 ›› Issue (4) : 819 -831.
Number of fixed points for unitary Tn−1-manifold
Let M be a 2n-dimensional closed unitary manifold with a Tn−1-action with only isolated fixed points. In this paper, we first prove that the equivariant cobordism class of a unitary Tn−1-manifold M is just determined by the equivariant Chern numbers [M],where ω= (i1, i2, ..., i6) are the multi-indexes for all i1, i2, ..., i6∈. Then we show that if Mdoes not bound equivariantly, then the number of fixed points is greater than or equal to , where denotes the minimum integer no less than n/6.
Unitary torus manifold / equivariant Chern number / cobordism / localization theorem
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |