On Diophantine approximation with one prime and three squares of primes

Wenxu GE , Feng ZHAO , Tianqin WANG

Front. Math. China ›› 2019, Vol. 14 ›› Issue (4) : 761 -779.

PDF (323KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (4) : 761 -779. DOI: 10.1007/s11464-019-0776-6
RESEARCH ARTICLE
RESEARCH ARTICLE

On Diophantine approximation with one prime and three squares of primes

Author information +
History +
PDF (323KB)

Abstract

Let λ1, λ2, λ3, λ4 be non-zero real numbers, not all of the same sign, w real. Suppose that the ratios λ1/λ2, λ1/λ3 are irrational and algebraic. Then there are in.nitely many solutions in primes pj, j =1, 2, 3, 4, to the inequality |λ1p1+ λ2p22+λ3p32+λ4p42y+w|<(max{p1,p22,p32,p42})5/64. This improves the earlier result.

Keywords

Diophantine inequalities / primes / Davenport-Heilbronn method / sieve methods

Cite this article

Download citation ▾
Wenxu GE, Feng ZHAO, Tianqin WANG. On Diophantine approximation with one prime and three squares of primes. Front. Math. China, 2019, 14(4): 761-779 DOI:10.1007/s11464-019-0776-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baker R C, Harman G. Diophantine approximation by prime numbers. J Lond Math Soc, 1982, 25: 201–215

[2]

Brüdern J, Cook J R, Perelli A. The values of binary linear forms at prime arguments. In: Greaves G R H, Harman G, Huxley N, eds. Sieve Methods, Exponential Sums, and Their Applications in Number Theory. London Math Soc Lecture Note Ser, Vol 237. Cambridge: Cambridge Univ Press, 1997, 87–100

[3]

Cook J R, Fox A. The values of ternary quadratic forms at prime arguments. Mathematika, 2001, 48: 137–149

[4]

Gallagher P X. A large sieve density estimate near σ=1. Invent Math, 1970, 11: 329–339

[5]

Ghosh A. The distribution of αp2 modulo 1. Proc Lond Math Soc, 1981, 42: 252–269

[6]

Harman G. Trigonometric sums over primes I. Mathematika, 1981, 28: 249–254

[7]

Harman G. The values of ternary quadratic forms at prime arguments. Mathematika, 2004, 51: 83–96

[8]

Harman G. Prime-Detecting Sieves. London Math Soc Monogr Ser, Vol 33. Princeton: Princeton Univ Press, 2007

[9]

Heath-Brown D R. Prime numbers in the short intervals and a generalized Vaughan identity. Canad J Math, 1982, 34: 1365–1377

[10]

Kunchev A V, Zhao L L. On sums of four squares of primes. Mathematika, 2016, 62: 348–361

[11]

Languasco A, Zaccagnini A. A Diophantine problem with a prime and three squares of primes. J Number Theory, 2012, 132: 3016–3028

[12]

Languasco A, Zaccagnini A. On a ternary Diophantine problem with mixed powers of primes. Acta Arith, 2013, 159: 345–362

[13]

Li W P, Wang T Z. Diophantine approximation with one prime and three squares of primes. Ramanujan J, 2011, 25: 343–357

[14]

Liu Z X, Sun H W. Diophantine approximation with one prime and three squares of primes. Ramanujan J, 2013, 30: 327–340

[15]

Vaughan R C. Diophantine approximation by prime numbers (I). Proc Lond Math Soc, 1974, 28: 373–384

[16]

Vaughan R C. Diophantine approximation by prime numbers (II). Proc Lond Math Soc, 1974, 28: 385–401

[17]

Vaughan R C. The Hardy-Littlewood Method. 2nd ed. Cambridge: Cambridge Univ Press, 1997

[18]

Wang Y C, Yao W L. Diophantine approximation with one prime and three squares of primes. J Number Theory, 2017, 180: 234–250

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (323KB)

654

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/