Absence of eigenvalues for quasiperiodic Schrödinger type operators

Jiahao XU , Xin ZHAO

Front. Math. China ›› 2019, Vol. 14 ›› Issue (3) : 645 -659.

PDF (292KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (3) : 645 -659. DOI: 10.1007/s11464-019-0773-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Absence of eigenvalues for quasiperiodic Schrödinger type operators

Author information +
History +
PDF (292KB)

Abstract

We obtain the matrix-valued Schrödinger-type operators [Hα,θ] with Lipschitz potentials having no eigenvalues on the set {E: L(E)<δC,d(α,θ)}, where δ is an explicit function depending on the sampling function C(θ), dimension d, phase θ, and frequency α, and L(E) is the Lyapunov exponent.

Keywords

Quasiperiodic Schrödinger type operators / absence of eigenvalues / singular continuous spectrum

Cite this article

Download citation ▾
Jiahao XU, Xin ZHAO. Absence of eigenvalues for quasiperiodic Schrödinger type operators. Front. Math. China, 2019, 14(3): 645-659 DOI:10.1007/s11464-019-0773-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aubry S, André G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann Israel Phys Soc, 1980, 3: 33–164

[2]

Avila A. Almost reducibility and absolute continuity I. arXiv: 1006.0704

[3]

Avila A, Damanik D, Zhang Z. Singular density of states measure for subshift and quasi-periodic Schrödinger operators. Comm Math Phys, 2014, 330: 469–498

[4]

Avila A, Fayad B, Krikorian R. A KAM scheme for SL(2,ℝ) cocycles with Liouvillean frequencies. Geom Funct Anal, 2011, 21(5): 1001–1019

[5]

Avila A, Jitomirskaya S. The ten Martini problem. Ann of Math, 2009, 170: 303–342

[6]

Avila A, Jitomirskaya S. Almost localization and almost reducibility. J Eur Math Soc (JEMS), 2010, 12: 93–131

[7]

Avila A, You J, Zhou Q. Sharp phase transitions for the almost Mathieu operator. Duke Math J, 2017, 166(14): 2697–2718

[8]

Avron J, Simon B. Almost periodic Schrödinger operators. II. The integrated density of states. Duke Math J, 1983, 50: 369–391

[9]

Damanik D. A version of Gordon's theorem for multi-dimensional Schrödinger operators. Trans Amer Math Soc, 2004, 356: 495–507

[10]

Furman A. On the multiplicative ergodic theorem for the uniquely ergodic systems. Ann Inst Henri Poincaré Probab Stat, 1997, 33: 797–815

[11]

Gordon A Y, Jitomirskaya S, Last Y, Simon B. Duality and singular continuous spectrum in the almost Mathieu equation. Acta Math, 1997, 178(2): 169–183

[12]

Han R, Jitomirskaya S. Full measure reducibility and localization for Jacobi operators: a topological criterion. Adv Math, 2017, 319: 224–250

[13]

Haro A, Puig J. A Thouless formula and Aubry duality for long-range Schrödinger skew-products. Nonlinearity, 2013, 26: 1163–1187

[14]

Hou X, You J. Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent Math, 2012, 190(1): 209–260

[15]

Jitomirskaya S. Almost everything about the almost Mathieu operator, II. In: Proceedings of XI International Congress of Mathematical Physics. Cambridge: Int Press, 1994, 373–382

[16]

Jitomirskaya S. Ergodic Schrödinger operator (on one foot). In: Proc Sympos Pure Math, Vol 76. Providence: Amer Math Soc, 2007, 613–647

[17]

Jitomirskaya S, Kachkovskiy I. L2-reducibility and localization for quasiperiodic operators. Math Res Lett, 2016, 23(2): 431–444

[18]

Jitomirskaya S, Liu W. Arithmetic spectral transitions for the Maryland model. Comm Pure Appl Math, 2017, 70(6): 1025–1051

[19]

Jitomirskaya S, Marx C. Dynamics and spectral theory of quasi-periodic Schrödingertype operators. arXiv: 1503,05740vl

[20]

Jitomirskaya S, Yang F. Singular continuous spectrum for singular potentials. Comm Math Phys, 2016, 351(3): 1–9

[21]

Kotani S, Simon B. Stochastic Schrödinger operators and Jacobi matrices on the strip. Comm Math Phys, 1988, 119: 403–429

[22]

Mandelshtam V A, Zhitomirskaya S Y. 1D-quasiperiodic operators. Latent symmetries. Comm Math Phys, 1991, 139(3): 589–604

[23]

Oseledets V I. A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trudy Moskov Mat Obsc, 1968, 19: 179–210

[24]

Ruelle D. Ergodic theory of diérentiable dynamical systems. Publ Math Inst Hautes Études Sci, 1979, 50: 27–58

[25]

You J, Zhang S, Zhou Q. Point spectrum for quasi-periodic long range operators. J Spectr Theory, 2014, 4: 769–781

[26]

You J, Zhou Q. Embedding of analytic quasi-periodic cocycles into analytic quasiperiodic linear systems and its applications. Comm Math Phys, 2013, 323(3): 975–1005

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (292KB)

710

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/