Absence of eigenvalues for quasiperiodic Schrödinger type operators
Jiahao XU, Xin ZHAO
Absence of eigenvalues for quasiperiodic Schrödinger type operators
We obtain the matrix-valued Schrödinger-type operators [Hα,θ] with Lipschitz potentials having no eigenvalues on the set {E: L(E)<δC,d(α,θ)}, where δ is an explicit function depending on the sampling function C(θ), dimension d, phase θ, and frequency α, and L(E) is the Lyapunov exponent.
Quasiperiodic Schrödinger type operators / absence of eigenvalues / singular continuous spectrum
[1] |
Aubry S, André G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann Israel Phys Soc, 1980, 3: 33–164
|
[2] |
Avila A. Almost reducibility and absolute continuity I. arXiv: 1006.0704
|
[3] |
Avila A, Damanik D, Zhang Z. Singular density of states measure for subshift and quasi-periodic Schrödinger operators. Comm Math Phys, 2014, 330: 469–498
CrossRef
Google scholar
|
[4] |
Avila A, Fayad B, Krikorian R. A KAM scheme for SL(2,ℝ) cocycles with Liouvillean frequencies. Geom Funct Anal, 2011, 21(5): 1001–1019
CrossRef
Google scholar
|
[5] |
Avila A, Jitomirskaya S. The ten Martini problem. Ann of Math, 2009, 170: 303–342
CrossRef
Google scholar
|
[6] |
Avila A, Jitomirskaya S. Almost localization and almost reducibility. J Eur Math Soc (JEMS), 2010, 12: 93–131
CrossRef
Google scholar
|
[7] |
Avila A, You J, Zhou Q. Sharp phase transitions for the almost Mathieu operator. Duke Math J, 2017, 166(14): 2697–2718
CrossRef
Google scholar
|
[8] |
Avron J, Simon B. Almost periodic Schrödinger operators. II. The integrated density of states. Duke Math J, 1983, 50: 369–391
CrossRef
Google scholar
|
[9] |
Damanik D. A version of Gordon's theorem for multi-dimensional Schrödinger operators. Trans Amer Math Soc, 2004, 356: 495–507
CrossRef
Google scholar
|
[10] |
Furman A. On the multiplicative ergodic theorem for the uniquely ergodic systems. Ann Inst Henri Poincaré Probab Stat, 1997, 33: 797–815
CrossRef
Google scholar
|
[11] |
Gordon A Y, Jitomirskaya S, Last Y, Simon B. Duality and singular continuous spectrum in the almost Mathieu equation. Acta Math, 1997, 178(2): 169–183
CrossRef
Google scholar
|
[12] |
Han R, Jitomirskaya S. Full measure reducibility and localization for Jacobi operators: a topological criterion. Adv Math, 2017, 319: 224–250
CrossRef
Google scholar
|
[13] |
Haro A, Puig J. A Thouless formula and Aubry duality for long-range Schrödinger skew-products. Nonlinearity, 2013, 26: 1163–1187
CrossRef
Google scholar
|
[14] |
Hou X, You J. Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent Math, 2012, 190(1): 209–260
CrossRef
Google scholar
|
[15] |
Jitomirskaya S. Almost everything about the almost Mathieu operator, II. In: Proceedings of XI International Congress of Mathematical Physics. Cambridge: Int Press, 1994, 373–382
|
[16] |
Jitomirskaya S. Ergodic Schrödinger operator (on one foot). In: Proc Sympos Pure Math, Vol 76. Providence: Amer Math Soc, 2007, 613–647
CrossRef
Google scholar
|
[17] |
Jitomirskaya S, Kachkovskiy I. L2-reducibility and localization for quasiperiodic operators. Math Res Lett, 2016, 23(2): 431–444
CrossRef
Google scholar
|
[18] |
Jitomirskaya S, Liu W. Arithmetic spectral transitions for the Maryland model. Comm Pure Appl Math, 2017, 70(6): 1025–1051
CrossRef
Google scholar
|
[19] |
Jitomirskaya S, Marx C. Dynamics and spectral theory of quasi-periodic Schrödingertype operators. arXiv: 1503,05740vl
|
[20] |
Jitomirskaya S, Yang F. Singular continuous spectrum for singular potentials. Comm Math Phys, 2016, 351(3): 1–9
CrossRef
Google scholar
|
[21] |
Kotani S, Simon B. Stochastic Schrödinger operators and Jacobi matrices on the strip. Comm Math Phys, 1988, 119: 403–429
CrossRef
Google scholar
|
[22] |
Mandelshtam V A, Zhitomirskaya S Y. 1D-quasiperiodic operators. Latent symmetries. Comm Math Phys, 1991, 139(3): 589–604
CrossRef
Google scholar
|
[23] |
Oseledets V I. A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trudy Moskov Mat Obsc, 1968, 19: 179–210
|
[24] |
Ruelle D. Ergodic theory of diérentiable dynamical systems. Publ Math Inst Hautes Études Sci, 1979, 50: 27–58
CrossRef
Google scholar
|
[25] |
You J, Zhang S, Zhou Q. Point spectrum for quasi-periodic long range operators. J Spectr Theory, 2014, 4: 769–781
CrossRef
Google scholar
|
[26] |
You J, Zhou Q. Embedding of analytic quasi-periodic cocycles into analytic quasiperiodic linear systems and its applications. Comm Math Phys, 2013, 323(3): 975–1005
CrossRef
Google scholar
|
/
〈 | 〉 |