Absence of eigenvalues for quasiperiodic Schrödinger type operators

Jiahao XU, Xin ZHAO

PDF(292 KB)
PDF(292 KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (3) : 645-659. DOI: 10.1007/s11464-019-0773-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Absence of eigenvalues for quasiperiodic Schrödinger type operators

Author information +
History +

Abstract

We obtain the matrix-valued Schrödinger-type operators [Hα,θ] with Lipschitz potentials having no eigenvalues on the set {E: L(E)<δC,d(α,θ)}, where δ is an explicit function depending on the sampling function C(θ), dimension d, phase θ, and frequency α, and L(E) is the Lyapunov exponent.

Keywords

Quasiperiodic Schrödinger type operators / absence of eigenvalues / singular continuous spectrum

Cite this article

Download citation ▾
Jiahao XU, Xin ZHAO. Absence of eigenvalues for quasiperiodic Schrödinger type operators. Front. Math. China, 2019, 14(3): 645‒659 https://doi.org/10.1007/s11464-019-0773-9

References

[1]
Aubry S, André G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann Israel Phys Soc, 1980, 3: 33–164
[2]
Avila A. Almost reducibility and absolute continuity I. arXiv: 1006.0704
[3]
Avila A, Damanik D, Zhang Z. Singular density of states measure for subshift and quasi-periodic Schrödinger operators. Comm Math Phys, 2014, 330: 469–498
CrossRef Google scholar
[4]
Avila A, Fayad B, Krikorian R. A KAM scheme for SL(2,ℝ) cocycles with Liouvillean frequencies. Geom Funct Anal, 2011, 21(5): 1001–1019
CrossRef Google scholar
[5]
Avila A, Jitomirskaya S. The ten Martini problem. Ann of Math, 2009, 170: 303–342
CrossRef Google scholar
[6]
Avila A, Jitomirskaya S. Almost localization and almost reducibility. J Eur Math Soc (JEMS), 2010, 12: 93–131
CrossRef Google scholar
[7]
Avila A, You J, Zhou Q. Sharp phase transitions for the almost Mathieu operator. Duke Math J, 2017, 166(14): 2697–2718
CrossRef Google scholar
[8]
Avron J, Simon B. Almost periodic Schrödinger operators. II. The integrated density of states. Duke Math J, 1983, 50: 369–391
CrossRef Google scholar
[9]
Damanik D. A version of Gordon's theorem for multi-dimensional Schrödinger operators. Trans Amer Math Soc, 2004, 356: 495–507
CrossRef Google scholar
[10]
Furman A. On the multiplicative ergodic theorem for the uniquely ergodic systems. Ann Inst Henri Poincaré Probab Stat, 1997, 33: 797–815
CrossRef Google scholar
[11]
Gordon A Y, Jitomirskaya S, Last Y, Simon B. Duality and singular continuous spectrum in the almost Mathieu equation. Acta Math, 1997, 178(2): 169–183
CrossRef Google scholar
[12]
Han R, Jitomirskaya S. Full measure reducibility and localization for Jacobi operators: a topological criterion. Adv Math, 2017, 319: 224–250
CrossRef Google scholar
[13]
Haro A, Puig J. A Thouless formula and Aubry duality for long-range Schrödinger skew-products. Nonlinearity, 2013, 26: 1163–1187
CrossRef Google scholar
[14]
Hou X, You J. Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent Math, 2012, 190(1): 209–260
CrossRef Google scholar
[15]
Jitomirskaya S. Almost everything about the almost Mathieu operator, II. In: Proceedings of XI International Congress of Mathematical Physics. Cambridge: Int Press, 1994, 373–382
[16]
Jitomirskaya S. Ergodic Schrödinger operator (on one foot). In: Proc Sympos Pure Math, Vol 76. Providence: Amer Math Soc, 2007, 613–647
CrossRef Google scholar
[17]
Jitomirskaya S, Kachkovskiy I. L2-reducibility and localization for quasiperiodic operators. Math Res Lett, 2016, 23(2): 431–444
CrossRef Google scholar
[18]
Jitomirskaya S, Liu W. Arithmetic spectral transitions for the Maryland model. Comm Pure Appl Math, 2017, 70(6): 1025–1051
CrossRef Google scholar
[19]
Jitomirskaya S, Marx C. Dynamics and spectral theory of quasi-periodic Schrödingertype operators. arXiv: 1503,05740vl
[20]
Jitomirskaya S, Yang F. Singular continuous spectrum for singular potentials. Comm Math Phys, 2016, 351(3): 1–9
CrossRef Google scholar
[21]
Kotani S, Simon B. Stochastic Schrödinger operators and Jacobi matrices on the strip. Comm Math Phys, 1988, 119: 403–429
CrossRef Google scholar
[22]
Mandelshtam V A, Zhitomirskaya S Y. 1D-quasiperiodic operators. Latent symmetries. Comm Math Phys, 1991, 139(3): 589–604
CrossRef Google scholar
[23]
Oseledets V I. A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trudy Moskov Mat Obsc, 1968, 19: 179–210
[24]
Ruelle D. Ergodic theory of diérentiable dynamical systems. Publ Math Inst Hautes Études Sci, 1979, 50: 27–58
CrossRef Google scholar
[25]
You J, Zhang S, Zhou Q. Point spectrum for quasi-periodic long range operators. J Spectr Theory, 2014, 4: 769–781
CrossRef Google scholar
[26]
You J, Zhou Q. Embedding of analytic quasi-periodic cocycles into analytic quasiperiodic linear systems and its applications. Comm Math Phys, 2013, 323(3): 975–1005
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(292 KB)

Accesses

Citations

Detail

Sections
Recommended

/