Convergence of truncated rough singular integrals supported by subvarieties on Triebel-Lizorkin spaces

Feng LIU , Qingying XUE , K^oz^o YABUTA

Front. Math. China ›› 2019, Vol. 14 ›› Issue (3) : 591 -604.

PDF (429KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (3) : 591 -604. DOI: 10.1007/s11464-019-0765-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Convergence of truncated rough singular integrals supported by subvarieties on Triebel-Lizorkin spaces

Author information +
History +
PDF (429KB)

Abstract

Let be a function of homogeneous of degree zero and satisfy the cancellation condition on the unit sphere. Suppose that h is a radial function. Let Th,Ω,p be the classical singular Radon transform, and let Th,Ω,pε be its truncated operator with rough kernels associated to polynomial mapping p which is defined by Th,Ω,pεf(x)=||y|εf(xp(y))h(|y|)Ω(y)|y|ndy|. In this paper, we show that for any α(,) and (p,q) satisfying certain index condition, the operator Th,Ω,pε enjoys the following convergence properties limε0Th,Ω,pεfTh,Ω,pfF ˙αp,q(d)=0 and limε0Th,Ω,pεfTh,Ω,pfB ˙αp,q(d)=0 provided that ΩL(log+L)β(Sn1) for some β(0,1] or ΩH1(Sn1), or Ω(1qBq(0,0)(Sn1)).

Keywords

Singular Radon transform / truncated singular integral / rough kernel / convergence

Cite this article

Download citation ▾
Feng LIU, Qingying XUE, K^oz^o YABUTA. Convergence of truncated rough singular integrals supported by subvarieties on Triebel-Lizorkin spaces. Front. Math. China, 2019, 14(3): 591-604 DOI:10.1007/s11464-019-0765-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Qassem H, Pan Y. On certain estimates for Marcinkiewicz integrals and extrapolation. Collect Math, 2009, 60: 123–145

[2]

Al-Salman A, Pan Y. Singular integrals with rough kernels in Llog⁡L(Sn−1). J Lond Math Soc, 2002, 66: 153–174

[3]

Al-Salman A, Pan Y. Singular integrals with rough kernels. Canad Math Bull, 2004, 47: 3–11

[4]

Chen Y, Ding Y, Liu H. Rough singular integrals supported on submanifolds. J Math Anal Appl, 2010, 368: 677–691

[5]

Colzani L. Hardy Spaces on Spheres. Ph D Thesis. Washington Univ, St Louis, 1982

[6]

Fan D, Pan Y. Singular integral operators with rough kernels supported by subvarieties. Amer J Math, 1997, 119: 799–839

[7]

Frazier M, Jawerth B, Weiss G. Littlewood-Paley Theory and the Study of Function Spaces. CBMS Reg Conf Ser Math, No 79. Providence: Amer Math Soc, 1991

[8]

Grafakos L, Stefanov A. Lp bounds for singular integrals and maximal singular integrals with rough kernels. Indiana Univ Math J, 1998, 47: 455–469

[9]

Liu F, Wu H. Rough singular integrals associated to compound mappings on Triebel-Lizorkin spaces and Besov spaces. Taiwanese J Math, 2014, 18: 127–146

[10]

Liu F, Wu H, Zhang D. Boundedness of certain singular integrals along surfaces on Triebel-Lizorkin spaces. Forum Math, 2015, 27: 3439–3460

[11]

Liu F, Xue Q, Yabuta K. Rough maximal singular integral and maximal operators supported by subvarieties on Triebel-Lizorkin spaces. Nonlinear Anal, 2018, 171: 41–72

[12]

Sato S. Estimates for singular integrals and extrapolation. Studia Math, 2009, 192: 219–233

[13]

Stein E M. Note on the class Llog⁡L. Studia Math, 1969, 32: 305–310

[14]

Stein E M. Problems in harmonic analysis related to curvature and oscillatory integrals. In: Proceedings of the International Congress of Mathematicians, 1986, Vol 1. Providence: Amer Math Soc, 1987, 196–221

[15]

Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993

[16]

Triebel H. Theory of Function Spaces. Monogr Math, Vol 78. Basel: Birkhäser, 1983

[17]

Yabuta K. Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces. J Inequal Appl, 2015, 107: 1–26

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (429KB)

665

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/