Convergence of truncated rough singular integrals supported by subvarieties on Triebel-Lizorkin spaces

Feng LIU, Qingying XUE, K^oz^o YABUTA

PDF(429 KB)
PDF(429 KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (3) : 591-604. DOI: 10.1007/s11464-019-0765-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Convergence of truncated rough singular integrals supported by subvarieties on Triebel-Lizorkin spaces

Author information +
History +

Abstract

Let be a function of homogeneous of degree zero and satisfy the cancellation condition on the unit sphere. Suppose that h is a radial function. Let Th,Ω,p be the classical singular Radon transform, and let Th,Ω,pε be its truncated operator with rough kernels associated to polynomial mapping p which is defined by Th,Ω,pεf(x)=||y|εf(xp(y))h(|y|)Ω(y)|y|ndy|. In this paper, we show that for any α(,) and (p,q) satisfying certain index condition, the operator Th,Ω,pε enjoys the following convergence properties limε0Th,Ω,pεfTh,Ω,pfF ˙αp,q(d)=0 and limε0Th,Ω,pεfTh,Ω,pfB ˙αp,q(d)=0 provided that ΩL(log+L)β(Sn1) for some β(0,1] or ΩH1(Sn1), or Ω(1qBq(0,0)(Sn1)).

Keywords

Singular Radon transform / truncated singular integral / rough kernel / convergence

Cite this article

Download citation ▾
Feng LIU, Qingying XUE, K^oz^o YABUTA. Convergence of truncated rough singular integrals supported by subvarieties on Triebel-Lizorkin spaces. Front. Math. China, 2019, 14(3): 591‒604 https://doi.org/10.1007/s11464-019-0765-9

References

[1]
Al-Qassem H, Pan Y. On certain estimates for Marcinkiewicz integrals and extrapolation. Collect Math, 2009, 60: 123–145
CrossRef Google scholar
[2]
Al-Salman A, Pan Y. Singular integrals with rough kernels in Llog⁡L(Sn−1). J Lond Math Soc, 2002, 66: 153–174
CrossRef Google scholar
[3]
Al-Salman A, Pan Y. Singular integrals with rough kernels. Canad Math Bull, 2004, 47: 3–11
CrossRef Google scholar
[4]
Chen Y, Ding Y, Liu H. Rough singular integrals supported on submanifolds. J Math Anal Appl, 2010, 368: 677–691
CrossRef Google scholar
[5]
Colzani L. Hardy Spaces on Spheres. Ph D Thesis. Washington Univ, St Louis, 1982
[6]
Fan D, Pan Y. Singular integral operators with rough kernels supported by subvarieties. Amer J Math, 1997, 119: 799–839
CrossRef Google scholar
[7]
Frazier M, Jawerth B, Weiss G. Littlewood-Paley Theory and the Study of Function Spaces. CBMS Reg Conf Ser Math, No 79. Providence: Amer Math Soc, 1991
CrossRef Google scholar
[8]
Grafakos L, Stefanov A. Lp bounds for singular integrals and maximal singular integrals with rough kernels. Indiana Univ Math J, 1998, 47: 455–469
CrossRef Google scholar
[9]
Liu F, Wu H. Rough singular integrals associated to compound mappings on Triebel-Lizorkin spaces and Besov spaces. Taiwanese J Math, 2014, 18: 127–146
CrossRef Google scholar
[10]
Liu F, Wu H, Zhang D. Boundedness of certain singular integrals along surfaces on Triebel-Lizorkin spaces. Forum Math, 2015, 27: 3439–3460
CrossRef Google scholar
[11]
Liu F, Xue Q, Yabuta K. Rough maximal singular integral and maximal operators supported by subvarieties on Triebel-Lizorkin spaces. Nonlinear Anal, 2018, 171: 41–72
CrossRef Google scholar
[12]
Sato S. Estimates for singular integrals and extrapolation. Studia Math, 2009, 192: 219–233
CrossRef Google scholar
[13]
Stein E M. Note on the class Llog⁡L. Studia Math, 1969, 32: 305–310
CrossRef Google scholar
[14]
Stein E M. Problems in harmonic analysis related to curvature and oscillatory integrals. In: Proceedings of the International Congress of Mathematicians, 1986, Vol 1. Providence: Amer Math Soc, 1987, 196–221
[15]
Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993
CrossRef Google scholar
[16]
Triebel H. Theory of Function Spaces. Monogr Math, Vol 78. Basel: Birkhäser, 1983
CrossRef Google scholar
[17]
Yabuta K. Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces. J Inequal Appl, 2015, 107: 1–26
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(429 KB)

Accesses

Citations

Detail

Sections
Recommended

/