Lipschitz Gromov-Hausdorff approximations to two-dimensional closed piecewise flat Alexandrov spaces

Xueping LI

PDF(389 KB)
PDF(389 KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (2) : 349-380. DOI: 10.1007/s11464-019-0762-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Lipschitz Gromov-Hausdorff approximations to two-dimensional closed piecewise flat Alexandrov spaces

Author information +
History +

Abstract

We show that a closed piecewise flat 2-dimensional Alexandrov space Σ can be bi-Lipschitz embedded into a Euclidean space such that the embedded image of Σ has a tubular neighborhood in a generalized sense. As an application, we show that for any metric space sufficiently close to Σ in the Gromov-Hausdorff topology, there is a Lipschitz Gromov-Hausdorff approxima-tion.

Keywords

Alexandrov space / Gromov-Hausdorff approximation / tubular neighborhood

Cite this article

Download citation ▾
Xueping LI. Lipschitz Gromov-Hausdorff approximations to two-dimensional closed piecewise flat Alexandrov spaces. Front. Math. China, 2019, 14(2): 349‒380 https://doi.org/10.1007/s11464-019-0762-z

References

[1]
Alexander S, Kapovitch V, Petrunin A. Alexandrov Geometry. Book in preparation, 2017
[2]
Burago D, Burago Yu, Ivanov S. A Course in Metric Geometry. Grad Stud Math, Vol 33. Providence: Amer Math Soc, 2001
CrossRef Google scholar
[3]
Burago Yu, Gromov M, Perelman G. A. D. Alexandrov spaces with curvature bounded below. Uspekhi Mat Nauk, 1992, 47(2): 3–51 (in Russian); Russian Math Surveys, 1992, 47(2): 1–58
CrossRef Google scholar
[4]
Cheeger J, Colding T. On the structure of space with Ricci curvature bounded below I. J Differential Geom, 1997, 46: 406–480
CrossRef Google scholar
[5]
Cheeger J, Fukaya K, Gromov M. Nilpotent structures and invariant metrics on collapsed manifolds. J Amer Math Soc, 1992, 5: 327–372
CrossRef Google scholar
[6]
Fukaya K. Collapsing of Riemannian manifolds to ones of lower dimensions. J Differential Geom, 1987, 25: 139–156
CrossRef Google scholar
[7]
Gromov M, Lafontaine J, Pansu P. Structures métriques pour les variétés riemanniennes. Paris: CedicFernand, 1981
[8]
Perelman G. Alexandrov's spaces with curvature bounded from below II. Preprint, 1991
[9]
Yamaguchi T. Collapsing and pinching under lower curvature bound. Ann of Math, 1991, 133: 317{357
CrossRef Google scholar
[10]
Yamaguchi T. A convergence theorem in the geometry of Alexandrov spaces. Sémin Congr, 1996, 1: 601–642

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(389 KB)

Accesses

Citations

Detail

Sections
Recommended

/