Regularity criteria for Navier-Stokes-Allen-Cahn and related systems

Jishan FAN , Fucai LI

Front. Math. China ›› 2019, Vol. 14 ›› Issue (2) : 301 -314.

PDF (263KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (2) : 301 -314. DOI: 10.1007/s11464-019-0757-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Regularity criteria for Navier-Stokes-Allen-Cahn and related systems

Author information +
History +
PDF (263KB)

Abstract

We prove a regularity criterion for the 3D Navier-Stokes-Allen-Cahn system in a bounded smooth domain which improves the result obtained by Y. Li, S. Ding, and M. Huang [Discrete Contin. Dyn. Syst. Ser. B, 2016, 21(5): 1507–1523]. We also present a similar result to the 3D Navier-Stokes-Cahn-Hilliard system.

Keywords

Regularity criterion / Navier-Stokes-Allen-Cahn system / Navier-Stokes-Cahn-Hilliard system

Cite this article

Download citation ▾
Jishan FAN, Fucai LI. Regularity criteria for Navier-Stokes-Allen-Cahn and related systems. Front. Math. China, 2019, 14(2): 301-314 DOI:10.1007/s11464-019-0757-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abels H. On a diffuse interface model for two-phase ows of viscous, incompressible uids with matched densities. Arch Ration Mech Anal, 2009, 194: 463–506

[2]

Adams R A, Fournier J J F. Sobolev Spaces. 2nd ed. Amsterdam: Elsevier/Academic Press, 2003

[3]

Beirão da Veiga H, Crispo F. Sharp inviscid limit results under Navier type boundary conditions. An Lp theory. J Math Fluid Mech, 2010, 12: 397–411

[4]

Boyer F. Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot Anal, 1999, 20: 175–212

[5]

Cho Y, Kim H. Unique solvability for the density-dependent Navier-Stokes equations. Nonlinear Anal, 2004, 59: 465–489

[6]

Gal C G, Grasselli M. Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D. Ann Inst H Poincaré Anal Non Linéaire, 2010, 27: 401–436

[7]

Kotschote M, Zacher R. Strong solutions in the dynamical theory of compressible uid mixtures. Math Models Methods Appl Sci, 2015, 25: 1217–1256

[8]

Li Y, Ding S, Huang M. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete Contin Dyn Syst Ser B, 2016, 21: 1507–1523

[9]

Li Y, Huang M. Strong solutions for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Z Angew Math Phys, 2018, 69: Art 68 (18pp)

[10]

Liu C, Shen J. A phase field model for the mixture of two incompressible uids and its approximation by a Fourier-spectral method. Phys D, 2003, 179: 211–228

[11]

Lunardi A. Interpolation Theory. 2nd ed. Pisa: Edizioni della Normale, 2009

[12]

Starovoitov V N. On the motion of a two-component uid in the presence of capillary forces. Mat Zametki, 1997, 62: 293–305

[13]

Xu X, Zhao L, Liu C. Axisymmetric solutions to coupled Navier-Stokes/Allen-Cahn equations. SIAM J Math Anal, 2010, 41: 2246–2282

[14]

Yang X, Feng J J, Liu C, Shen J. Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J Comput Phys, 2006, 218: 417–428

[15]

Zhao L, Guo B, Huang H. Vanishing viscosity limit for a coupled Navier-Stokes/Allen-Cahn system. J Math Anal Appl, 2011, 384: 232–245

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (263KB)

643

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/