Frobenius Poisson algebras
Juan LUO , Shengqiang WANG , Quanshui WU
Front. Math. China ›› 2019, Vol. 14 ›› Issue (2) : 395 -420.
Frobenius Poisson algebras
This paper is devoted to study Frobenius Poisson algebras. We introduce pseudo-unimodular Poisson algebras by generalizing unimodular Poisson algebras, and investigate Batalin-Vilkovisky structures on their cohomology algebras. For any Frobenius Poisson algebra, all Batalin-Vilkovisky operators on its Poisson cochain complex are described explicitly. It is proved that there exists a Batalin-Vilkovisky operator on its cohomology algebra which is induced from a Batalin-Vilkovisky operator on the Poisson cochain complex, if and only if the Poisson structure is pseudo-unimodular. The relation between modular derivations of polynomial Poisson algebras and those of their truncated Poisson algebras is also described in some cases.
Poisson algebra / Frobenius algebra / Batalin-Vilkovisky algebra / Poisson (co)homology / modular derivation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |