Addition formulae, Backlund transformations, periodic solutions, and quadrilateral equations

Danda ZHANG , Da-jun ZHANG

Front. Math. China ›› 2019, Vol. 14 ›› Issue (1) : 203 -223.

PDF (305KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (1) : 203 -223. DOI: 10.1007/s11464-019-0753-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Addition formulae, Backlund transformations, periodic solutions, and quadrilateral equations

Author information +
History +
PDF (305KB)

Abstract

Addition formulae of trigonometric and elliptic functions are used to generate Backlund transformations together with their connecting quadrilateral equations. As a result, we obtain the periodic solutions for a number of multidimensionally consistent affine linear and multiquadratic quadrilateral equations.

Keywords

Addition formulae / trigonometric functions / elliptic functions / Backlund transformation / quadrilateral equations

Cite this article

Download citation ▾
Danda ZHANG, Da-jun ZHANG. Addition formulae, Backlund transformations, periodic solutions, and quadrilateral equations. Front. Math. China, 2019, 14(1): 203-223 DOI:10.1007/s11464-019-0753-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adler V E, Bobenko A I, Suris Yu B. Classification of integrable equations on quadgraphs. The consistency approach. Comm Math Phys, 2003, 233: 513–543

[2]

Atkinson J. Backlund transformations for integrable lattice equations. J Phys A, 2008, 41: 135202 (8pp)

[3]

Atkinson J, Nieszporski M. Multi-quadratic quad equations: integrable cases from a factorized-discriminant hypothesis. Int Math Res Not IMRN, 2014, 2014: 4215–4240

[4]

Bobenko A I, Suris Yu B. Integrable systems on quad-graphs. Int Math Res Not IMRN, 2002, 2002: 573–611

[5]

Hietarinta J, Joshi N, Nijhoff F W. Discrete Systems and Integrability. Cambridge: Cambridge Univ Press, 2016

[6]

Hietarinta J, Viallet C. Weak Lax pairs for lattice equations. Nonlinearity, 2011, 25: 1955–1966

[7]

Hietarinta J, Zhang D J. Soliton solutions for ABS lattice equations: II. Casoratians and bilinearization. J Phys A, 2009, 42: 404006 (30pp)

[8]

Nijhoff F W. Lax pair for the Adler (lattice Krichever-Novikov) system. Phys Lett A, 2002, 297: 49–58

[9]

Nijhoff F W, Atkinson J. Elliptic N-soliton solutions of ABS lattice equations. Int Math Res Not IMRN, 2010, 2010: 3837–3895

[10]

Nijhoff F W, Walker A J. The discrete and continuous Painlevé VI hierarchy and the Garnier systems. Glasg Math J, 2001, 43A: 109–123

[11]

Xu X X, Cao C W. A new explicit solution to the lattice sine-Gordon equation. Modern Phys Lett B, 2016, 30: 1650166 (7pp)

[12]

Zhang D D, Zhang D J. Rational solutions to the ABS list: Transformation approach. SIGMA Symmetry Integrability Geom Methods Appl, 2017, 13: 078 (24pp)

[13]

Zhang D D, Zhang D J. On decomposition of the ABS lattice equations and related Backlund transformations. J Nonlinear Math Phys, 2018, 25: 34–53

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (305KB)

800

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/