Addition formulae, Backlund transformations, periodic solutions, and quadrilateral equations

Danda ZHANG, Da-jun ZHANG

PDF(305 KB)
PDF(305 KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (1) : 203-223. DOI: 10.1007/s11464-019-0753-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Addition formulae, Backlund transformations, periodic solutions, and quadrilateral equations

Author information +
History +

Abstract

Addition formulae of trigonometric and elliptic functions are used to generate Backlund transformations together with their connecting quadrilateral equations. As a result, we obtain the periodic solutions for a number of multidimensionally consistent affine linear and multiquadratic quadrilateral equations.

Keywords

Addition formulae / trigonometric functions / elliptic functions / Backlund transformation / quadrilateral equations

Cite this article

Download citation ▾
Danda ZHANG, Da-jun ZHANG. Addition formulae, Backlund transformations, periodic solutions, and quadrilateral equations. Front. Math. China, 2019, 14(1): 203‒223 https://doi.org/10.1007/s11464-019-0753-0

References

[1]
Adler V E, Bobenko A I, Suris Yu B. Classification of integrable equations on quadgraphs. The consistency approach. Comm Math Phys, 2003, 233: 513–543
CrossRef Google scholar
[2]
Atkinson J. Backlund transformations for integrable lattice equations. J Phys A, 2008, 41: 135202 (8pp)
[3]
Atkinson J, Nieszporski M. Multi-quadratic quad equations: integrable cases from a factorized-discriminant hypothesis. Int Math Res Not IMRN, 2014, 2014: 4215–4240
[4]
Bobenko A I, Suris Yu B. Integrable systems on quad-graphs. Int Math Res Not IMRN, 2002, 2002: 573–611
[5]
Hietarinta J, Joshi N, Nijhoff F W. Discrete Systems and Integrability. Cambridge: Cambridge Univ Press, 2016
CrossRef Google scholar
[6]
Hietarinta J, Viallet C. Weak Lax pairs for lattice equations. Nonlinearity, 2011, 25: 1955–1966
CrossRef Google scholar
[7]
Hietarinta J, Zhang D J. Soliton solutions for ABS lattice equations: II. Casoratians and bilinearization. J Phys A, 2009, 42: 404006 (30pp)
[8]
Nijhoff F W. Lax pair for the Adler (lattice Krichever-Novikov) system. Phys Lett A, 2002, 297: 49–58
CrossRef Google scholar
[9]
Nijhoff F W, Atkinson J. Elliptic N-soliton solutions of ABS lattice equations. Int Math Res Not IMRN, 2010, 2010: 3837–3895
[10]
Nijhoff F W, Walker A J. The discrete and continuous Painlevé VI hierarchy and the Garnier systems. Glasg Math J, 2001, 43A: 109–123
CrossRef Google scholar
[11]
Xu X X, Cao C W. A new explicit solution to the lattice sine-Gordon equation. Modern Phys Lett B, 2016, 30: 1650166 (7pp)
[12]
Zhang D D, Zhang D J. Rational solutions to the ABS list: Transformation approach. SIGMA Symmetry Integrability Geom Methods Appl, 2017, 13: 078 (24pp)
[13]
Zhang D D, Zhang D J. On decomposition of the ABS lattice equations and related Backlund transformations. J Nonlinear Math Phys, 2018, 25: 34–53
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(305 KB)

Accesses

Citations

Detail

Sections
Recommended

/