Path independence of additive functionals for stochastic differential equations under G-framework

Panpan REN, Fen-Fen YANG

PDF(305 KB)
PDF(305 KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (1) : 135-148. DOI: 10.1007/s11464-019-0752-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Path independence of additive functionals for stochastic differential equations under G-framework

Author information +
History +

Abstract

The path independence of additive functionals for stochastic differential equations (SDEs) driven by the G-Brownian motion is characterized by the nonlinear partial differential equations. The main result generalizes the existing ones for SDEs driven by the standard Brownian motion.

Keywords

Stochastic differential equation (SDE) / partial differential equation (PDE) / additive functional / G-SDEs / G-Brownian motion / nonlinear PDE

Cite this article

Download citation ▾
Panpan REN, Fen-Fen YANG. Path independence of additive functionals for stochastic differential equations under G-framework. Front. Math. China, 2019, 14(1): 135‒148 https://doi.org/10.1007/s11464-019-0752-1

References

[1]
Bai X P, Buckdahn R. Inf-convolution of G-expectations. Sci China Math, 2010, 53: 1957–1970
[2]
Bishwal J P N. Parameter Estimation in Stochastic Differential Equations: Springer, 2008
CrossRef Google scholar
[3]
Black F, Scholes M. The pricing of options and corporate liabilities. J Polit Econ, 1973, 81: 637–654
[4]
Denis L, Hu M S, Peng S G. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion pathes. Potential Anal, 2011, 34: 139–161
[5]
Feng C R, Qu B Y,Zhao H Z. A sufficient and necessary condition of PS-ergodicity of periodic measures and generated ergodic upper expectations. 2018, arXiv: 1806.03680
[6]
Feng C R,Wu P Y, Zhao H Z. Ergodicity of invariant capacity. 2018, arXiv: 1806.03990
[7]
Gu Y F, Ren Y, Sakthive R. Square-mean pseudo almost automorphic mild solutions for stochastic evolution equations driven by G-Brownian motion. Stoch Anal Appl, 2016, 34: 528–545
[8]
Hodges S, Carverhill A. Quasi mean reversion in an effcient stock market: the characterisation of economic equilibria which support Black-Scholes option pricing. Econom J, 1993, 103: 395–405
[9]
Hu M S, Ji S L. Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion. Stochastic Process Appl, 2017, 127: 107–134
[10]
Hu M S, Ji S L, Peng S G,Song Y S. Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion. Stochastic Process Appl, 2014, 124: 1170–1195
[11]
Hu M S, Ji S L, Yang S Z. A stochastic recursive optimal control problem under the G-expectation framework. Appl Math Optim, 2014, 70: 253–278
[12]
Peng S G. G-Brownian motion and dynamic risk measures under volatility uncertainty. 2007, arXiv: 0711.2834v1
[13]
Peng S G.G-expectation, G-Brownian motion and related stochastic calculus of Itô type. In: Benth F E, Di Nunno G, Lindstrøm T, Øksendal B, Zhang T S, eds. Stochastic Analysis and Applications, the Abel Symposium 2005. Abel Symp, Vol 2. Berlin: Springer, 2007, 541–567
[14]
Peng S G. Nonlinear expectations and stochastic calculus under uncertainty. 2010, arXiv: 1002.4546v1
[15]
Peng S G. Theory, methods and meaning of nonlinear expectation theory. Sci Sin Math, 2017, 47: 1223–1254 (in Chinese)
[16]
Peng S G,Song Y S, Zhang J F. A complete representation theorem for G-martingales. Stochastics, 2014, 86: 609–631
[17]
Qiao H J, Wu J L. Characterizing the path-independence of the Girsanov transformation for non-Lipschitz SDEs with jumps. Statist Probab Lett, 2016, 119: 326–333
[18]
Qiao H J, Wu J L. On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces. 2018, arXiv: 1707.07828
[19]
Ren P P, Wang F Y. Space-distribution PDEs for path independent additive functionals of McKean-Vlasov SDEs. 2018, arXiv: 1805.10841
[20]
Ren P P, Wu J L. Matrix-valued SDEs arising from currency exchange markets. arXiv: 1709.00471
[21]
Ren Y, Yin W S, Sakthivel R. Stabilization of stochastic differential equations driven by G-Brownian motion with feedback control based on discrete-time state observation. Automatica J IFAC, 2018, 95: 146–151
[22]
Song Y S. Uniqueness of the representation for G-martingales with finite variation. Electron J Probab, 2012, 17: 1–15
[23]
Truman A, Wang F Y, Wu J L, Yang W. A link of stochastic differential equations to nonlinear parabolic equations. Sci China Math, 2012, 55: 1971–1976
[24]
Wang B J, Gao H J. Exponential stability of solutions to stochastic differential equations driven by G-Lévy process. 2018, arXiv: 1801.03776
[25]
Wang M, Wu J L. Necessary and suffcient conditions for path-independence of Girsanov transformation for infinite-dimensional stochastic evolution equations. Front Math China, 2014, 9: 601–622
[26]
Wu B, Wu J L. Characterizing the path-independent property of the Girsanov density for degenerated stochastic differential equations. Statist Probab Lett, 2018, 133: 71–79
[27]
Wu J L, Yang W. On stochastic differential equations and a generalised Burgers equation. In: Zhang T S, Zhou X Y, eds. Stochastic Analysis and Its Applications to Finance: Essays in Honor of Prof. Jia-An Yan. Interdiscip Math Sci, Vol 13. Singapore: World Scientific, 2012, 425–435
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(305 KB)

Accesses

Citations

Detail

Sections
Recommended

/