Relative homological dimensions in recollements of triangulated categories
Yonggang HU, Hailou YAO
Relative homological dimensions in recollements of triangulated categories
Let be a proper class of triangles in a triangulated category , and let () be a recollement of triangulated categories. Based on Beligiannis's work, we prove that and have enough -projective objects whenever does. Moreover, in this paper, we give the bounds for the -global dimension of in a recollement () by controlling the behavior of the -global dimensions of the triangulated categories and : In particular, we show that the niteness of the -global dimensions of triangulated categories is invariant with respect to the recollements of triangulated categories.
Triangulated category / proper class of triangles / recollement / - global dimension / derived category
[1] |
Angeleri Hügel L, Koenig S, Liu Q H. Recollements and tilting objects. J Pure Appl Algebra, 2011, 215: 420–438
|
[2] |
Angeleri Hügel L, Koenig S, Liu Q H, Yang D. Ladders and simplicity of derived module categories. J Algebra, 2017, 472: 15–66
|
[3] |
Asadollahi J, Salaria S. Gorenstein objects in triangulated categories. J Algebra, 2004, 281: 264–286
|
[4] |
Asadollahi J, Salaria S. Tate cohomology and Gorensteinness for triangulated categories. J Algebra, 2006, 299: 480–502
|
[5] |
Auslander M, Buchweitz R O. The homological theory of maximal Cohen–Macaulay approximations. Mém Soc Math Fr (N S), 1989, 38: 5–37
|
[6] |
Beilinson A A, Bernstein J, Deligne P. Faisceaux pervers, analysis and topology on singular spaces, I. Astérisque, 1982, 100: 5–171
|
[7] |
Beligiannis A. Relative homological algebra and purity in triangulated categories. J Algebra, 2000, 227: 268–361
|
[8] |
Chen H X, Xi C C. Recollements of derived categories II: algebraic K-theory. 2012, arXiv: 1203.5168
|
[9] |
Chen H X, Xi C C. Recollements of derived categories III: nitistic dimensions. J Lond Math Soc (2), 2017, 95: 633–658
|
[10] |
Gao N. Gorensteinness, homological invariants and Gorenstein derived categories. Sci China Math, 2017, 60(3): 431–438
|
[11] |
Han Y. Recollements and Hochschild theory. J Algebra, 2014, 397: 535–547
|
[12] |
Happel D. Reduction techniques for homological conjectures. Tsukuba J Math, 1993, 17: 115–130
|
[13] |
Keller B. DerivingDG categories. Ann Sci Éc Norm Supér (4), 1994, 1: 63–102
|
[14] |
Koenig S. Tilting complexes, perpendicular categories and recollements of derived module categories of rings. J Pure Appl Algebra, 1991, 73: 211–232
|
[15] |
Li L P. Derived equivalences between triangular matrix algebras. Comm Algebra, 2018, 46(2): 615–628
|
[16] |
MacPherson R, Vilonen K. Elementary construction of perverse sheaves. Invent Math, 1986, 84: 403–485
|
[17] |
Margolis H R. Spectra and the Steenrod Algebra. North-Holland Math Library, Vol 29. Amsterdam: North-Holland Publishing Co, 1983
|
[18] |
Neeman A. Triangulated Categories. Ann of Math Stud, Vol 148. Princeton: Princeton Univ Press, 2001
|
[19] |
Nicolás P. On torsion torsionfree triple. 2007, arXiv: 0801.0507
|
[20] |
Psaroudakis C. Homological theory of recollements of abelian categories. J Algebra, 2014, 398: 63–110
|
[21] |
Qin Y Y. Recollements and homological dimensions. Comm Algebra, 2018, 46(1): 1–12
|
[22] |
Qin Y Y, Han Y. Reducing homological conjectures by n-recollements. Algebr Represent Theory, 2016, 19: 377–395
|
[23] |
Ren W, Liu Z K. Gorenstein homological dimensions for triangulated categories. J Algebra, 2014, 410: 258–276
|
[24] |
Rickard J. Morita theory for derived categories. Bull Lond Math Soc, 1984, 16(5): 518–522
|
[25] |
Verdier J L. Catégories dérivées, état 0. In: Lecture Notes in Math, Vol 569. Berlin: Springer-Verlag, 1977, 262–311
|
[26] |
Zhang P. Categorical resolutions of a class of derived categories. Sci China Math, 2018, 61: 1–12
|
/
〈 | 〉 |