E - global dimension,derived category" /> E - global dimension" /> E - global dimension,derived category" />

Relative homological dimensions in recollements of triangulated categories

Yonggang HU , Hailou YAO

Front. Math. China ›› 2019, Vol. 14 ›› Issue (1) : 25 -43.

PDF (323KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (1) : 25 -43. DOI: 10.1007/s11464-019-0751-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Relative homological dimensions in recollements of triangulated categories

Author information +
History +
PDF (323KB)

Abstract

Let E be a proper class of triangles in a triangulated category C, and let ( A,B,C) be a recollement of triangulated categories. Based on Beligiannis's work, we prove that A and C have enough E -projective objects whenever B does. Moreover, in this paper, we give the bounds for the E -global dimension of B in a recollement (A,B,C) by controlling the behavior of the E -global dimensions of the triangulated categories A and C : In particular, we show that the niteness of the E -global dimensions of triangulated categories is invariant with respect to the recollements of triangulated categories.

Keywords

Triangulated category / proper class of triangles / recollement / E - global dimension')"> E - global dimension / derived category

Cite this article

Download citation ▾
Yonggang HU, Hailou YAO. Relative homological dimensions in recollements of triangulated categories. Front. Math. China, 2019, 14(1): 25-43 DOI:10.1007/s11464-019-0751-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Angeleri Hügel L, Koenig S, Liu Q H. Recollements and tilting objects. J Pure Appl Algebra, 2011, 215: 420–438

[2]

Angeleri Hügel L, Koenig S, Liu Q H, Yang D. Ladders and simplicity of derived module categories. J Algebra, 2017, 472: 15–66

[3]

Asadollahi J, Salaria S. Gorenstein objects in triangulated categories. J Algebra, 2004, 281: 264–286

[4]

Asadollahi J, Salaria S. Tate cohomology and Gorensteinness for triangulated categories. J Algebra, 2006, 299: 480–502

[5]

Auslander M, Buchweitz R O. The homological theory of maximal Cohen–Macaulay approximations. Mém Soc Math Fr (N S), 1989, 38: 5–37

[6]

Beilinson A A, Bernstein J, Deligne P. Faisceaux pervers, analysis and topology on singular spaces, I. Astérisque, 1982, 100: 5–171

[7]

Beligiannis A. Relative homological algebra and purity in triangulated categories. J Algebra, 2000, 227: 268–361

[8]

Chen H X, Xi C C. Recollements of derived categories II: algebraic K-theory. 2012, arXiv: 1203.5168

[9]

Chen H X, Xi C C. Recollements of derived categories III: nitistic dimensions. J Lond Math Soc (2), 2017, 95: 633–658

[10]

Gao N. Gorensteinness, homological invariants and Gorenstein derived categories. Sci China Math, 2017, 60(3): 431–438

[11]

Han Y. Recollements and Hochschild theory. J Algebra, 2014, 397: 535–547

[12]

Happel D. Reduction techniques for homological conjectures. Tsukuba J Math, 1993, 17: 115–130

[13]

Keller B. DerivingDG categories. Ann Sci Éc Norm Supér (4), 1994, 1: 63–102

[14]

Koenig S. Tilting complexes, perpendicular categories and recollements of derived module categories of rings. J Pure Appl Algebra, 1991, 73: 211–232

[15]

Li L P. Derived equivalences between triangular matrix algebras. Comm Algebra, 2018, 46(2): 615–628

[16]

MacPherson R, Vilonen K. Elementary construction of perverse sheaves. Invent Math, 1986, 84: 403–485

[17]

Margolis H R. Spectra and the Steenrod Algebra. North-Holland Math Library, Vol 29. Amsterdam: North-Holland Publishing Co, 1983

[18]

Neeman A. Triangulated Categories. Ann of Math Stud, Vol 148. Princeton: Princeton Univ Press, 2001

[19]

Nicolás P. On torsion torsionfree triple. 2007, arXiv: 0801.0507

[20]

Psaroudakis C. Homological theory of recollements of abelian categories. J Algebra, 2014, 398: 63–110

[21]

Qin Y Y. Recollements and homological dimensions. Comm Algebra, 2018, 46(1): 1–12

[22]

Qin Y Y, Han Y. Reducing homological conjectures by n-recollements. Algebr Represent Theory, 2016, 19: 377–395

[23]

Ren W, Liu Z K. Gorenstein homological dimensions for triangulated categories. J Algebra, 2014, 410: 258–276

[24]

Rickard J. Morita theory for derived categories. Bull Lond Math Soc, 1984, 16(5): 518–522

[25]

Verdier J L. Catégories dérivées, état 0. In: Lecture Notes in Math, Vol 569. Berlin: Springer-Verlag, 1977, 262–311

[26]

Zhang P. Categorical resolutions of a class of derived categories. Sci China Math, 2018, 61: 1–12

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (323KB)

952

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/