Averages of shifted convolution sums for arithmetic functions

Miao LOU

PDF(305 KB)
PDF(305 KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (1) : 123-134. DOI: 10.1007/s11464-019-0749-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Averages of shifted convolution sums for arithmetic functions

Author information +
History +

Abstract

Let f be a full-level cusp form for GLm( ) with Fourier coeffcients Af(cm2,,c1,n). Let λ(n) be either the von Mangoldt function (n) or the k-th divisor function τk(n) : We consider averages of shifted convolution sums of the type |h|H|X<n2XAf(1,,1,n+h)λ(n)|2 : We succeed in obtaining a saving of an arbitrary power of the logarithm, provided that X833+εHX1ε .

Keywords

Average / shifted convolution sum / arithmetic function

Cite this article

Download citation ▾
Miao LOU. Averages of shifted convolution sums for arithmetic functions. Front. Math. China, 2019, 14(1): 123‒134 https://doi.org/10.1007/s11464-019-0749-9

References

[1]
Baier S, Browning T D, Marasingha G,Zhao L. Averages of shifted convolutions of d3(n): Proc Edinb Math Soc, 2012, 55: 551–576
[2]
Barthel L, Ramakrishnan D. A nonvanishing result for twists of L-functions of GL(n): Duke Math J, 1994, 74: 681–700
[3]
Deshouillers J-M. Majorations en moyenne de sommes de Kloosterman. Seminar on Number Theory, 1981/1982
[4]
Deshouillers J-M, Iwaniec H. An additive divisor problem. J Lond Math Soc, 1982, 26: 1–14
[5]
Drappeau S. Sums of Kloosterman sums in arithmetic progressions, and the error term in the dispersion method. Proc Lond Math Soc, 2017, 114: 684–732
[6]
Goldfeld D. Automorphic Forms and L-Functions for the Group GL(n;ℝ): Cambridge: Cambridge Univ Press, 2006
[7]
Goldfeld D, Li X. Voronoi formula for GL(n): Int Math Res Not IMRN, 2006, 2006: 1–25
[8]
Goldfeld D, Li X. The Voronoi formula for GL(n; ℝ): Int Math Res Not IMRN, 2008, 2008: 1–39
[9]
Harcos G,Michel P. The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points II. Invent Math, 2006, 163: 581–655
[10]
Hooley C. An asymptotic formula in the theory of number. Proc Lond Math Soc, 1957, 7: 396–413
[11]
Iwaniec H. Topics in Classical Automorphic Forms. Grad Stud Math, Vol 17. Providence: Amer Math Soc, 1997
[12]
Jiang Y,Lü G.Shifted convolution sums for higher rank groups. Forum Math, 2018, DOI: https://doi.org/10.1515/forum-2017-0269
CrossRef Google scholar
[13]
Lin Y. Triple correlations of Fourier coeffcients of cusp forms. Ramanujan J, 2018, 45: 841–858
[14]
Lü G.Exponential sums with Fourier coeffcients of automorphic forms. Math Z, 2018, 289: 267–278
[15]
Matomäki K, Radziwiłł M, Tao T. Correlations of the von Mangoldt and higher divisor functions. I. Long shift ranges. Proc Lond Math Soc, DOI: https://doi.org/10.1112/plms.12181
CrossRef Google scholar
[16]
Matomäki K, Radziwiłł M, Tao T. Correlations of the von Mangoldt and higher divisor functions. II. Divisor correlations in short ranges. arXiv: 1712.08840
[17]
Meurman T. On the binary additive divisor problem. In: Number Theory (Turku, 1999). Berlin: de Gruyter, 2001, 223–246
CrossRef Google scholar
[18]
Miller S D. Cancellation in additively twisted sums on GL(n): Amer J Math, 2006, 128: 699–729
[19]
Miller S D, Schmid W. Automorphic distributions, L-functions, and Voronoi summation for GL(3): Ann of Math, 2006, 164: 423–488
[20]
Miller S D, Schmid W. A general Voronoi summation formula for GL(n; ℤ ): In: Geometry and Analysis, No 2. Adv Lect Math (ALM), Vol 18. Somerville: Int Press, 2011, 173–224
[21]
Motohashi Y. The binary additive divisor problem. Ann Sci Éc Norm Supér, 1994, 27: 529–572
[22]
Munshi R. Shifted convolution of divisor function d3 and Ramanujan τ function. In: The Legacy of Srinivasa Ramanujan. Ramanujan Math Soc Lect Notes Ser 20. Mysore: Ramanujan Math Soc, 2013, 251–260
[23]
Pitt N J E.On shifted convolutions of ξ3(s) with automorphic L-functions. Duke Math J, 1995, 77: 383–406
[24]
Pitt N J E. On an analogue of Titchmarsh's divisor problem for holomorphic cusp forms. J Amer Math Soc, 2013, 26: 735–776
[25]
Singh S K. On double shifted convolution sums of SL2(ℤ) Hecke eigen forms. J Number Theory, 2018, 191: 258–272
[26]
Sun Q. Averages of shifted convolution sums for GL(3) × GL(2): J Number Theory, 2018, 182: 344–362
[27]
Topacogullari B. The shifted convolution of divisor functions. Q J Math, 2016, 67: 331{363
[28]
Topacogullari B. The shifted convolution of generalized divisor functions. Int Math Res Not IMRN, 2018, 2018: 7681–7724

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(305 KB)

Accesses

Citations

Detail

Sections
Recommended

/