PDF
(305KB)
Abstract
Let f be a full-level cusp form for GLm( ) with Fourier coeffcients . Let be either the von Mangoldt function or the k-th divisor function : We consider averages of shifted convolution sums of the type : We succeed in obtaining a saving of an arbitrary power of the logarithm, provided that .
Keywords
Average
/
shifted convolution sum
/
arithmetic function
Cite this article
Download citation ▾
Miao LOU.
Averages of shifted convolution sums for arithmetic functions.
Front. Math. China, 2019, 14(1): 123-134 DOI:10.1007/s11464-019-0749-9
| [1] |
Baier S, Browning T D, Marasingha G,Zhao L. Averages of shifted convolutions of d3(n): Proc Edinb Math Soc, 2012, 55: 551–576
|
| [2] |
Barthel L, Ramakrishnan D. A nonvanishing result for twists of L-functions of GL(n): Duke Math J, 1994, 74: 681–700
|
| [3] |
Deshouillers J-M. Majorations en moyenne de sommes de Kloosterman. Seminar on Number Theory, 1981/1982
|
| [4] |
Deshouillers J-M, Iwaniec H. An additive divisor problem. J Lond Math Soc, 1982, 26: 1–14
|
| [5] |
Drappeau S. Sums of Kloosterman sums in arithmetic progressions, and the error term in the dispersion method. Proc Lond Math Soc, 2017, 114: 684–732
|
| [6] |
Goldfeld D. Automorphic Forms and L-Functions for the Group GL(n;ℝ): Cambridge: Cambridge Univ Press, 2006
|
| [7] |
Goldfeld D, Li X. Voronoi formula for GL(n): Int Math Res Not IMRN, 2006, 2006: 1–25
|
| [8] |
Goldfeld D, Li X. The Voronoi formula for GL(n; ℝ): Int Math Res Not IMRN, 2008, 2008: 1–39
|
| [9] |
Harcos G,Michel P. The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points II. Invent Math, 2006, 163: 581–655
|
| [10] |
Hooley C. An asymptotic formula in the theory of number. Proc Lond Math Soc, 1957, 7: 396–413
|
| [11] |
Iwaniec H. Topics in Classical Automorphic Forms. Grad Stud Math, Vol 17. Providence: Amer Math Soc, 1997
|
| [12] |
Jiang Y,Lü G.Shifted convolution sums for higher rank groups. Forum Math, 2018,
|
| [13] |
Lin Y. Triple correlations of Fourier coeffcients of cusp forms. Ramanujan J, 2018, 45: 841–858
|
| [14] |
Lü G.Exponential sums with Fourier coeffcients of automorphic forms. Math Z, 2018, 289: 267–278
|
| [15] |
Matomäki K, Radziwiłł M, Tao T. Correlations of the von Mangoldt and higher divisor functions. I. Long shift ranges. Proc Lond Math Soc,
|
| [16] |
Matomäki K, Radziwiłł M, Tao T. Correlations of the von Mangoldt and higher divisor functions. II. Divisor correlations in short ranges. arXiv: 1712.08840
|
| [17] |
Meurman T. On the binary additive divisor problem. In: Number Theory (Turku, 1999). Berlin: de Gruyter, 2001, 223–246
|
| [18] |
Miller S D. Cancellation in additively twisted sums on GL(n): Amer J Math, 2006, 128: 699–729
|
| [19] |
Miller S D, Schmid W. Automorphic distributions, L-functions, and Voronoi summation for GL(3): Ann of Math, 2006, 164: 423–488
|
| [20] |
Miller S D, Schmid W. A general Voronoi summation formula for GL(n; ℤ ): In: Geometry and Analysis, No 2. Adv Lect Math (ALM), Vol 18. Somerville: Int Press, 2011, 173–224
|
| [21] |
Motohashi Y. The binary additive divisor problem. Ann Sci Éc Norm Supér, 1994, 27: 529–572
|
| [22] |
Munshi R. Shifted convolution of divisor function d3 and Ramanujan τ function. In: The Legacy of Srinivasa Ramanujan. Ramanujan Math Soc Lect Notes Ser 20. Mysore: Ramanujan Math Soc, 2013, 251–260
|
| [23] |
Pitt N J E.On shifted convolutions of ξ3(s) with automorphic L-functions. Duke Math J, 1995, 77: 383–406
|
| [24] |
Pitt N J E. On an analogue of Titchmarsh's divisor problem for holomorphic cusp forms. J Amer Math Soc, 2013, 26: 735–776
|
| [25] |
Singh S K. On double shifted convolution sums of SL2(ℤ) Hecke eigen forms. J Number Theory, 2018, 191: 258–272
|
| [26] |
Sun Q. Averages of shifted convolution sums for GL(3) × GL(2): J Number Theory, 2018, 182: 344–362
|
| [27] |
Topacogullari B. The shifted convolution of divisor functions. Q J Math, 2016, 67: 331{363
|
| [28] |
Topacogullari B. The shifted convolution of generalized divisor functions. Int Math Res Not IMRN, 2018, 2018: 7681–7724
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature