Jordan canonical form of three-way tensor with multilinear rank (4,4,3)

Lubin Cui, Minghui Li

PDF(313 KB)
PDF(313 KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (2) : 281-300. DOI: 10.1007/s11464-019-0747-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Jordan canonical form of three-way tensor with multilinear rank (4,4,3)

Author information +
History +

Abstract

The Jordan canonical form of matrix is an important concept in linear algebra. And the concept has been extended to three-way arrays case. In this paper, we study the Jordan canonical form of three-way tensor with multilinear rank (4,4,3). For a 4×4×4 tensor Gj with multilinear rank (4,4,3), we show that Gj must be turned into the canonical form if the upper triangular entries of the last three slices of Gj are nonzero. If some of the upper triangular entries of the last three slices of Gj are zeros, we give some conditions to guarantee that Gj can be turned into the canonical form.

Keywords

Jordan canonical form / tensor decomposition / multilinear rank

Cite this article

Download citation ▾
Lubin Cui, Minghui Li. Jordan canonical form of three-way tensor with multilinear rank (4,4,3). Front. Math. China, 2019, 14(2): 281‒300 https://doi.org/10.1007/s11464-019-0747-y

References

[1]
Acar E, Yener B. Unsupervised multiway data analysis: A literature survey. IEEE Trans Knowledge Data Eng, 2009, 21(1): 6–20
CrossRef Google scholar
[2]
Bro R. Parafac—Tutorial and applications. Chemometr Intell Lab, 1997, 38(2): 149–171
CrossRef Google scholar
[3]
Bro R. Review on multiway analysis in chemistry. Crit Rev Anal Chem, 2006, 36(3-4): 279–293
CrossRef Google scholar
[4]
Cui L, Chen C, Li W, Ng M K. An eigenvalue problem for even order tensors with its applications. Linear Multilinear Algebra, 2016, 64(4): 602–621
CrossRef Google scholar
[5]
Cui L, Li M. A note on the three-way generalization of the Jordan canonical form. Open Math, 2018, 16: 897–912
CrossRef Google scholar
[6]
Cui L, Li W, Ng M. Primitive tensors and directed hypergraphs. Linear Algebra Appl, 2015, 471: 96–108
CrossRef Google scholar
[7]
Kolda T, Bader B. Tensor decompositions and applications. SIAM Rev, 2009, 51(3): 455–500
CrossRef Google scholar
[8]
Krijnen W, Dijkstra T, Stegeman A. On the non-existence of optimal solutions and the occurrence of \degeneracy" in the CANDECOMP/PARAFAC model. Psychometrika, 2008, 73(3): 431–439
CrossRef Google scholar
[9]
Lathauwer L. Decompositions of a higher-order tensor in block terms—Part I: Lemmas for partitioned matrices. SIAM J Matrix Anal Appl, 2008, 30(3): 1022–1032
CrossRef Google scholar
[10]
Lathauwer L. Decompositions of a higher-order tensor in block terms—Part II: Definitions and uniqueness. SIAM J Matrix Anal Appl, 2008, 30(3): 1033–1066
CrossRef Google scholar
[11]
Lathauwer L. Decompositions of a higher-order tensor in block terms—Part III: Alternating least squares algorithms. SIAM J Matrix Anal Appl, 2008, 30(3): 1067–1083
CrossRef Google scholar
[12]
Lathauwer L, Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM J Matrix Anal Appl, 2000, 21: 1253–1278
CrossRef Google scholar
[13]
Ng M, Qi L, Zhou G. Finding the largest eigenvalue of a nonnegative tensor. SIAM J Matrix Anal Appl, 2009, 31: 1090–1099
CrossRef Google scholar
[14]
Qi L, Luo Z. Tensor Analysis: Spectral Theory and Special Tensors. Philadelphia: SIAM, 2017
CrossRef Google scholar
[15]
Qi L, Sun W, Wang Y. Numerical multilinear algebra and its applications. Front Math China, 2007, 2(4): 501–526
CrossRef Google scholar
[16]
Sidiropoulos N, Bro R, Giannakis G. Parallel factor analysis in sensor array processing. IEEE Trans Signal Process, 2000, 48(8): 2377–2388
CrossRef Google scholar
[17]
Silva V, Lim L. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J Matrix Anal Appl, 2008, 30(3): 1084–1127
CrossRef Google scholar
[18]
Stegeman A. Candecomp/Parafac: From diverging components to a decomposition in block terms. SIAM J Matrix Anal Appl, 2012, 33: 291–316
CrossRef Google scholar
[19]
Stegeman A. A three-way Jordan canonical form as limit of low-rank tensor approximations. SIAM J Matrix Anal Appl, 2013, 34: 624–625
CrossRef Google scholar
[20]
Vasilescu M, Terzopoulos D. Multilinear image analysis for facial recognition. In: Object recognition supported by user interaction for service robots, Quebec City, Quebec, Canada, 2002, Vol 2. 2002, 511–514
[21]
Vasilescu M, Terzopoulos D. TensorTextures: Multilinear image-based rendering. ACM Trans Graphics, 2004, 23(3): 336–342
CrossRef Google scholar
[22]
de Vos M, de Lathauwer L, Vanrumste B, van Huffel S, van Paesschen W. Canonical decomposition of ictal scalp EEG and accurate source localisation: Principles and simulation study. Comput Intell Neurosci, 2007, 2007: 1–10
CrossRef Google scholar
[23]
de Vos M, Vergult A, de Lathauwer L, de Clercq W, van Huffel S, Dupont P, Palmini A, van Paesschen W. Canonical decomposition of ictal scalp EEG reliably detects the seizure onset zone. NeuroImage, 2007, 37(3): 844–854
CrossRef Google scholar
[24]
Yang Y, Yang Q. A Study on Eigenvalues of Higher-Order Tensors and Related Polynomial Optimization Problems. Beijing: Science Press, 2015
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(313 KB)

Accesses

Citations

Detail

Sections
Recommended

/