New characterizations of Musielak–Orlicz–Sobolev spaces via sharp ball averaging functions

Sibei YANG , Dachun YANG , Wen YUAN

Front. Math. China ›› 2019, Vol. 14 ›› Issue (1) : 177 -201.

PDF (346KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (1) : 177 -201. DOI: 10.1007/s11464-019-0744-1
RESEARCH ARTICLE
RESEARCH ARTICLE

New characterizations of Musielak–Orlicz–Sobolev spaces via sharp ball averaging functions

Author information +
History +
PDF (346KB)

Abstract

We establish a new characterization of the Musielak–Orlicz–Sobolev space on n; which includes the classical Orlicz–Sobolev space, the weighted Sobolev space, and the variable exponent Sobolev space as special cases, in terms of sharp ball averaging functions. Even in a special case, namely, the variable exponent Sobolev space, the obtained result in this article improves the corresponding result obtained by P. Hästö and A. M. Ribeiro [Commun. Contemp. Math., 2017, 19: 1650022] via weakening the assumption fL1(n) into fL 1(n), which was conjectured to be true by Hästö and Ribeiro in the aforementioned same article.

Keywords

Musielak–Orlicz–Sobolev space / Orlicz–Sobolev space / variable exponent Sobolev space / sharp ball averaging function

Cite this article

Download citation ▾
Sibei YANG, Dachun YANG, Wen YUAN. New characterizations of Musielak–Orlicz–Sobolev spaces via sharp ball averaging functions. Front. Math. China, 2019, 14(1): 177-201 DOI:10.1007/s11464-019-0744-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acerbi E, Mingione G. Regularity results for a class of functionals with non-standard growth. Arch Ration Mech Anal, 2001, 156: 121–140

[2]

Acerbi E, Mingione G. Gradient estimates for the p(x)-Laplacean system. J Reine Angew Math, 2005, 584: 117–148

[3]

Adams R A, Fournier J J F. Sobolev Spaces. 2nd ed. Pure Appl Math, Vol 140. Amsterdam: Elsevier/Academic Press, 2003

[4]

Ahmida Y, Chlebicka I, Gwiazda P, Youssfi A. Gossez’s approximation theorems in the Musielak–Orlicz–Sobolev spaces. J Funct Anal, 2018, 275: 2538–2571

[5]

Birnbaum Z, Orlicz W. Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Studia Math, 1931, 3: 1–67

[6]

Bourgain J, Brezis H, Mironescu P. Another look at Sobolev spaces. In: Optimal Control and Partial Differential Equations. Amsterdam: IOS, 2001, 439–455

[7]

Bourgain J, Brezis H, Mironescu P. Limiting embedding theorems for Ws,p when s↑1 and applications. J Anal Math, 2002, 87: 77–101

[8]

Brezis H. How to recognize constant functions. A connection with Sobolev spaces. Russian Math Surveys, 2002, 57: 693–708

[9]

Colombo M, Mingione G. Bounded minimisers of double phase variational integrals. Arch Ration Mech Anal, 2015, 218: 219–273

[10]

Colombo M, Mingione G. Calderón–Zygmund estimates and non-uniformly elliptic operators. J Funct Anal, 2016, 270: 1416–1478

[11]

Cruz-Uribe D V, Fiorenza A. Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Appl Numer Harmon Anal. Heidelberg: Birkhäuser/Springer, 2013

[12]

Diening L. Maximal function on generalized Lebesgue spaces Lp(⋅). Math Inequal Appl, 2004, 7: 245–253

[13]

Diening L. Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces. Bull Sci Math, 2005, 129: 657–700

[14]

Diening L, Harjulehto P, Hästö P, Mizuta Y, Shimomura T. Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann Acad Sci Fenn Math, 2009, 34: 503–522

[15]

Diening L, Harjulehto P, Hästö P, Růžička M. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math, Vol 2017. Heidelberg: Springer, 2011

[16]

Diening L, Hästö P. Variable exponent trace spaces. Studia Math, 2007, 183: 127–141

[17]

Fernández Bonder J, Salort A M. Fractional order Orlicz–Sobolev spaces. arXiv: 1707.03267

[18]

Ferreira R, Hästö P, Ribeiro A M. Characterization of generalized Orlicz spaces. Commun Contemp Math, 2018,

[19]

Fiorenza A. A mean continuity type result for certain Sobolev spaces with variable exponent. Commun Contemp Math, 2002, 4: 587–605

[20]

Gallardo D. Orlicz spaces for which the Hardy–Littlewood maximal operator is bounded. Publ Mat, 1988, 32: 261–266

[21]

Grafakos L. Classical Fourier Analysis. 3rd ed. Graduate Texts in Math, Vol 249. New York: Springer, 2014

[22]

Harjulehto P, Hästö P, Klén R. Generalized Orlicz spaces and related PDE. Nonlinear Anal, 2016, 143: 155–173

[23]

Harjulehto P, Hästö P, Toivanen O. Hölder regularity of quasiminimizers under generalized growth conditions. Calc Var Partial Differential Equations, 2017, 56(2): Art 22 (26pp)

[24]

Hästö P. The maximal operator on generalized Orlicz spaces. J Funct Anal, 2015, 269: 4038–4048

[25]

Hästö P, Ribeiro A M. Characterization of the variable exponent Sobolev norm without derivatives. Commun Contemp Math, 2017, 19: 1650022 (13pp)

[26]

Kokilashvili V, Krbec M. Weighted Inequalities in Lorentz and Orlicz Spaces. River Edge: World Scientific Publishing Co Inc, 1991

[27]

Krasnosel’skiǐ M A, Rutickiǐ Ja B. Convex Functions and Orlicz Spaces. Groningen: P Noordhoff Ltd, 1961

[28]

Musielak J. Orlicz Spaces and Modular Spaces. Lecture Notes in Math, Vol 1034. Berlin: Springer-Verlag, 1983

[29]

Nakano H. Topology of Linear Topological Spaces. Tokyo: Maruzen Co Ltd, 1951

[30]

Nakano H. Modulared Semi-Ordered Linear Spaces. Tokyo: Maruzen Co Ltd, 1951

[31]

Ohno T, Shimomura T. Musielak–Orlicz–Sobolev spaces on metric measure spaces. Czechoslovak Math J, 2015, 65(140): 435–474

[32]

Ohno T, Shimomura T. Musielak–Orlicz–Sobolev spaces with zero boundary values on metric measure spaces. Czechoslovak Math J, 2016, 66(141): 371–394

[33]

Orlicz W. Über eine gewisse Klasse von Räumen vom Typus B. Bull Int Acad Pol Ser A, 1932, 8: 207–220

[34]

Rao M M, Ren Z. Theory of Orlicz Spaces. New York: Marcel Dekker, 1991

[35]

Rao M M, Ren Z. Applications of Orlicz Spaces. New York: Marcel Dekker, 2002

[36]

Squassina M, Volzone B. Bourgain–Brézis–Mironescu formula for magnetic operators. C R Math Acad Sci Paris, 2016, 354: 825–831

[37]

Turesson B O. Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Math, Vol 1736. Berlin: Springer-Verlag, 2000

[38]

Yang D, Liang Y, Ky L D. Real-Variable Theory of Musielak–Orlicz Hardy Spaces. Lecture Notes in Math, Vol 2182. Cham: Springer, 2017

[39]

Youssfi A, Ahmida Y. Some approximation results in Musielak–Orlicz spaces. arXiv: 1708.02453

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (346KB)

1096

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/